Reversors and Symmetries for Polynomial Automorphisms of the Plane

We obtain normal forms for symmetric and for reversible polynomial automorphisms (polynomial maps that have polynomial inverses) of the plane. Our normal forms are based on the generalized Hénon normal form of Friedland and Milnor. We restrict to the case that the symmetries and reversors are also polynomial automorphisms. We show that each such reversor has finite-order, and that for nontrivial, real maps, the reversor has order 2 or 4. The normal forms are shown to be unique up to finitely many choices. We investigate some of the dynamical consequences of reversibility, especially for the case that the reversor is not an involution.

[1]  L. Brouwer Über die periodischen Transformationen der Kugel , 1919 .

[2]  Heinrich W. E. Jung Über ganze birationale Transformationen der Ebene. , 1942 .

[3]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[4]  M. Hénon Numerical study of quadratic area-preserving mappings , 1969 .

[5]  G. E. Bredon Introduction to compact transformation groups , 1972 .

[6]  R. Devaney Reversible diffeomorphisms and flows , 1976 .

[7]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[8]  Shmuel Friedland,et al.  Dynamical properties of plane polynomial automorphisms , 1989, Ergodic Theory and Dynamical Systems.

[9]  C. Eugene Wayne,et al.  Weak Chaos and Quasi-Regular Patterns. By G. M. ZASLAVSKY, R. Z. SAGDEEV, D. A. USIKOV and A. A CHERNIKOV. Cambridge University Press, 1991. 253 pp. £40 or $75 , 1992, Journal of Fluid Mechanics.

[10]  B. M. Fulk MATH , 1992 .

[11]  G. R. W. Quispel,et al.  Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems , 1992 .

[12]  Jeroen S. W. Lamb,et al.  Reversing symmetries in dynamical systems , 1992 .

[13]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[14]  J. Lamb Crystallographic symmetries of stochastic webs , 1993 .

[15]  M. Baake,et al.  Reversing symmetry group of Gl ( 2 , Z ) and PGl ( 2 , Z ) matrices with connections to cat maps and trace maps , 1997 .

[16]  J. Lamb,et al.  On symmetric attractors in reversible dynamical systems , 1998 .

[17]  J. Lamb,et al.  Time-reversal symmetry in dynamical systems: a survey , 1998 .

[18]  G. Goodson Inverse Conjugacies and Reversing Symmetry Groups , 1999 .

[19]  M. Baake,et al.  Symmetries and reversing symmetries of toral automorphisms , 2000, math/0006092.

[20]  公庄 庸三 Basic Algebra = 代数学入門 , 2002 .

[21]  M. Golubitsky,et al.  The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space , 2002 .

[22]  Reversible polynomial automorphisms of the plane: the involutory case , 2002, nlin/0209055.