A fast, high-order solver for the Grad-Shafranov equation
暂无分享,去创建一个
Leslie Greengard | Michael O'Neil | Jeffrey P. Freidberg | Antoine J. Cerfon | Andras Pataki | L. Greengard | J. Freidberg | Andras Pataki | A. Cerfon | M. O’Neil
[1] Jet Efda Contributors,et al. H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET , 2011 .
[2] Harold Grad,et al. Classical Diffusion in a Tokomak , 1970 .
[3] Per-Gunnar Martinsson,et al. A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..
[4] Stephen C. Jardin,et al. Computational Methods in Plasma Physics , 2010 .
[5] V. Shafranov. On Magnetohydrodynamical Equilibrium Configurations , 1958 .
[6] Andras Pataki. High order methods for elliptic problems in plasma physics , 2011 .
[7] J. P. Goedbloed. Some remarks on computing axisymmetric equilibria , 1984 .
[8] A. Bondeson,et al. The CHEASE code for toroidal MHD equilibria , 1996 .
[9] J. P. Goedbloed. Conformal mapping methods in two-dimensional magnetohydrodynamics , 1981 .
[10] Alan J Wootton,et al. Analytical tokamak equilibrium for shaped plasmas , 1996 .
[11] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[12] J. Freidberg,et al. “One size fits all” analytic solutions to the Grad–Shafranov equation , 2010 .
[13] R. Aymar,et al. The ITER design , 2002 .
[14] L. L. Lodestro,et al. On the Grad–Shafranov equation as an eigenvalue problem, with implications for q solvers , 1994 .
[15] J. Spruck,et al. Multiconstrained variational problems in magnetohydrodynamics: equilibrium and slow evolution , 1993 .
[16] Vladimir Rokhlin,et al. A Fast Algorithm for the Numerical Evaluation of Conformal Mappings , 1989 .
[17] E. Giovannozzi,et al. Dimensionless pedestal identity plasmas on Alcator C-Mod and JET , 2007 .
[18] Russell Y. Neches,et al. High-resolution magnetohydrodynamic equilibrium code for unity beta plasmas , 2006, J. Comput. Phys..
[19] L. Greengard,et al. A Fast Poisson Solver for Complex Geometries , 1995 .
[20] J. P. Goedbloed,et al. Isoparametric Bicubic Hermite Elements for Solution of the Grad-Shafranov Equation , 1991 .
[21] A. Pletzer,et al. Theory of Perturbed Equilibria for Solving the Grad-Shafranov Equation , 1999 .
[22] L. Solov’ev,et al. THEORY OF HYDROMAGNETIC STABILITY OF TOROIDAL PLASMA CONFIGURATIONS. , 1967 .
[23] L. Greengard,et al. A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy , 1996 .
[24] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[25] F. Troyon,et al. Computation of MHD equilibria by a quasi-inverse finite hybrid element approach , 1987 .
[26] Rony Keppens,et al. Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2010 .
[27] L. L. Lao,et al. Equilibrium properties of spherical torus plasmas in NSTX , 2001 .
[28] Harold Grad,et al. HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .
[29] Shinji Tokuda,et al. Computation of MHD equilibrium of Tokamak Plasma , 1991 .
[30] Stephen C. Jardin,et al. A triangular finite element with first-derivative continuity applied to fusion MHD applications , 2004 .
[31] E. C. Howell,et al. NIMEQ: MHD Equilibrium Solver for NIMROD , 2008 .
[32] Leslie Greengard,et al. A free-space adaptive fmm-based pde solver in three dimensions , 2011 .
[33] Leslie Greengard,et al. A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions , 2001, SIAM J. Sci. Comput..
[34] Elias M. Stein,et al. The Cauchy kernel, the Szegö kernel, and the Riemann mapping function , 1978 .
[35] Jie Shen,et al. Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..
[36] Jeffrey A Holmes,et al. Evolution of flux-conserving tokamak equilibria with preprogrammed cross sections , 1979 .
[37] Heli Chen,et al. A Direct Spectral Collocation Poisson Solver in Polar and Cylindrical Coordinates , 2000 .
[38] A. Bondeson,et al. Axisymmetric MHD equilibrium solver with bicubic Hermite elements , 1992 .
[39] Manfred R. Trummer,et al. Numerical conformal mapping via the Szego¨ Kernel , 1986 .
[40] Stephen C. Jardin,et al. The Princeton spectral equilibrium code: PSEC , 1985 .
[41] G O Ludwig. Direct variational solutions of the tokamak equilibrium problem , 1997 .
[42] S. Jardin,et al. An iterative metric method for solving the inverse tokamak equilibrium problem , 1979 .