A fast, high-order solver for the Grad-Shafranov equation

Abstract We present a new fast solver to calculate fixed-boundary plasma equilibria in toroidally axisymmetric geometries. By combining conformal mapping with Fourier and integral equation methods on the unit disk, we show that high-order accuracy can be achieved for the solution of the equilibrium equation and its first and second derivatives. Smooth arbitrary plasma cross-sections as well as arbitrary pressure and poloidal current profiles are used as initial data for the solver. Equilibria with large Shafranov shifts can be computed without difficulty. Spectral convergence is demonstrated by comparing the numerical solution with a known exact analytic solution. A fusion-relevant example of an equilibrium with a pressure pedestal is also presented.

[1]  Jet Efda Contributors,et al.  H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET , 2011 .

[2]  Harold Grad,et al.  Classical Diffusion in a Tokomak , 1970 .

[3]  Per-Gunnar Martinsson,et al.  A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..

[4]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[5]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[6]  Andras Pataki High order methods for elliptic problems in plasma physics , 2011 .

[7]  J. P. Goedbloed Some remarks on computing axisymmetric equilibria , 1984 .

[8]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[9]  J. P. Goedbloed Conformal mapping methods in two-dimensional magnetohydrodynamics , 1981 .

[10]  Alan J Wootton,et al.  Analytical tokamak equilibrium for shaped plasmas , 1996 .

[11]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[12]  J. Freidberg,et al.  “One size fits all” analytic solutions to the Grad–Shafranov equation , 2010 .

[13]  R. Aymar,et al.  The ITER design , 2002 .

[14]  L. L. Lodestro,et al.  On the Grad–Shafranov equation as an eigenvalue problem, with implications for q solvers , 1994 .

[15]  J. Spruck,et al.  Multiconstrained variational problems in magnetohydrodynamics: equilibrium and slow evolution , 1993 .

[16]  Vladimir Rokhlin,et al.  A Fast Algorithm for the Numerical Evaluation of Conformal Mappings , 1989 .

[17]  E. Giovannozzi,et al.  Dimensionless pedestal identity plasmas on Alcator C-Mod and JET , 2007 .

[18]  Russell Y. Neches,et al.  High-resolution magnetohydrodynamic equilibrium code for unity beta plasmas , 2006, J. Comput. Phys..

[19]  L. Greengard,et al.  A Fast Poisson Solver for Complex Geometries , 1995 .

[20]  J. P. Goedbloed,et al.  Isoparametric Bicubic Hermite Elements for Solution of the Grad-Shafranov Equation , 1991 .

[21]  A. Pletzer,et al.  Theory of Perturbed Equilibria for Solving the Grad-Shafranov Equation , 1999 .

[22]  L. Solov’ev,et al.  THEORY OF HYDROMAGNETIC STABILITY OF TOROIDAL PLASMA CONFIGURATIONS. , 1967 .

[23]  L. Greengard,et al.  A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy , 1996 .

[24]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[25]  F. Troyon,et al.  Computation of MHD equilibria by a quasi-inverse finite hybrid element approach , 1987 .

[26]  Rony Keppens,et al.  Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2010 .

[27]  L. L. Lao,et al.  Equilibrium properties of spherical torus plasmas in NSTX , 2001 .

[28]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[29]  Shinji Tokuda,et al.  Computation of MHD equilibrium of Tokamak Plasma , 1991 .

[30]  Stephen C. Jardin,et al.  A triangular finite element with first-derivative continuity applied to fusion MHD applications , 2004 .

[31]  E. C. Howell,et al.  NIMEQ: MHD Equilibrium Solver for NIMROD , 2008 .

[32]  Leslie Greengard,et al.  A free-space adaptive fmm-based pde solver in three dimensions , 2011 .

[33]  Leslie Greengard,et al.  A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions , 2001, SIAM J. Sci. Comput..

[34]  Elias M. Stein,et al.  The Cauchy kernel, the Szegö kernel, and the Riemann mapping function , 1978 .

[35]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..

[36]  Jeffrey A Holmes,et al.  Evolution of flux-conserving tokamak equilibria with preprogrammed cross sections , 1979 .

[37]  Heli Chen,et al.  A Direct Spectral Collocation Poisson Solver in Polar and Cylindrical Coordinates , 2000 .

[38]  A. Bondeson,et al.  Axisymmetric MHD equilibrium solver with bicubic Hermite elements , 1992 .

[39]  Manfred R. Trummer,et al.  Numerical conformal mapping via the Szego¨ Kernel , 1986 .

[40]  Stephen C. Jardin,et al.  The Princeton spectral equilibrium code: PSEC , 1985 .

[41]  G O Ludwig Direct variational solutions of the tokamak equilibrium problem , 1997 .

[42]  S. Jardin,et al.  An iterative metric method for solving the inverse tokamak equilibrium problem , 1979 .