Random Sampling and Efficient Algorithms for Multiscale PDEs

We describe a numerical framework that uses random sampling to efficiently capture low-rank local solution spaces of multiscale PDE problems arising in domain decomposition. In contrast to existing techniques, our method does not rely on detailed analytical understanding of specific multiscale PDEs, in particular, their asymptotic limits. We present the application of the framework on two examples --- a linear kinetic equation and an elliptic equation with rough media. On these two examples, this framework achieves the asymptotic preserving property for the kinetic equations and numerical homogenization for the elliptic equations.

[1]  E. Wild On Boltzmann's equation in the kinetic theory of gases , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  J. Keller,et al.  Asymptotic solution of neutron transport problems for small mean free paths , 1974 .

[3]  G. Papanicolaou Asymptotic analysis of transport processes , 1975 .

[4]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[5]  C. Bardos,et al.  DIFFUSION APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE , 1984 .

[6]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[7]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[8]  E. Larsen,et al.  Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II , 1989 .

[9]  G. Allaire Homogenization and two-scale convergence , 1992 .

[10]  J. Banavar,et al.  The Heterogeneous Multi-Scale Method , 1992 .

[11]  C. D. Levermore,et al.  Fully-discrete numerical transfer in diffusive regimes , 1993 .

[12]  Michael Vogelius,et al.  First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium , 1993, SIAM J. Appl. Math..

[13]  F. Golse,et al.  A numerical method for computing asymptotic states and outgoing distributions for kinetic linear half-space problems , 1995 .

[14]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[15]  S. Moskow,et al.  First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[17]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[18]  N. SIAMJ. AN ASYMPTOTIC-INDUCED SCHEME FOR NONSTATIONARY TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT , 1998 .

[19]  A. Klar An Asymptotic-Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit , 1998 .

[20]  Alan M. Frieze,et al.  Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[21]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[22]  G. W. Stewart,et al.  Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix , 1999, Numerische Mathematik.

[23]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[24]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[25]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[26]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[27]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[28]  Y. Azmy Unconditionally stable and robust adjacent-cell diffusive preconditioning of weighted-difference particle transport methods is impossible , 2002 .

[29]  Mario Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .

[30]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[31]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[32]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[33]  Assyr Abdulle,et al.  Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..

[34]  V. Rokhlin,et al.  A randomized algorithm for the approximation of matrices , 2006 .

[35]  Yalchin Efendiev,et al.  An Adaptive Multiscale Method for Simulation of Fluid Flow in Heterogeneous Porous Media , 2006, Multiscale Model. Simul..

[36]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[37]  V. Rokhlin,et al.  A fast randomized algorithm for the approximation of matrices ✩ , 2007 .

[38]  Luc Mieussens,et al.  Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..

[39]  I. Babuska,et al.  The penetration function and its application to microscale problems , 2008 .

[40]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[41]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[42]  Jean-Luc Guermond,et al.  Asymptotic Analysis of Upwind Discontinuous Galerkin Approximation of the Radiative Transport Equation in the Diffusive Limit , 2010, SIAM J. Numer. Anal..

[43]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[44]  Giacomo Dimarco,et al.  Exponential Runge-Kutta Methods for Stiff Kinetic Equations , 2010, SIAM J. Numer. Anal..

[45]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[46]  Lexing Ying,et al.  Fast construction of hierarchical matrix representation from matrix-vector multiplication , 2009, J. Comput. Phys..

[47]  P. Degond Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.

[48]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[49]  Per-Gunnar Martinsson,et al.  A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[50]  F. Lin,et al.  Convergence Rates in L2 for Elliptic Homogenization Problems , 2011, 1103.0023.

[51]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[52]  Assyr Abdulle,et al.  Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems , 2012, J. Comput. Phys..

[53]  Stefan A. Sauter,et al.  The AL Basis for the Solution of Elliptic Problems in Heterogeneous Media , 2012, Multiscale Model. Simul..

[54]  H. Egger,et al.  An Lp theory for stationary radiative transfer , 2013, 1304.6504.

[55]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[56]  Qin Li,et al.  A convergent method for linear half-space kinetic equations , 2014, 1408.6630.

[57]  Qin Li,et al.  Exponential Runge-Kutta for the inhomogeneous Boltzmann equations with high order of accuracy , 2014, J. Comput. Phys..

[58]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[59]  H. Owhadi,et al.  Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.

[60]  A. Abdulle,et al.  Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2014 .

[61]  Houman Owhadi,et al.  Bayesian Numerical Homogenization , 2014, Multiscale Model. Simul..

[62]  W. Hackbusch,et al.  Hierarchical Matrices: Algorithms and Analysis , 2015 .

[63]  Qin Li,et al.  Diffusion approximations and domain decomposition method of linear transport equations: Asymptotics and numerics , 2014, J. Comput. Phys..

[64]  Lei Wu,et al.  Geometric Correction for Diffusive Expansion of Steady Neutron Transport Equation , 2014, 1404.2583.

[65]  Pengfei Liu,et al.  A heterogeneous stochastic FEM framework for elliptic PDEs , 2014, J. Comput. Phys..

[66]  Victor M. Calo,et al.  Randomized Oversampling for Generalized Multiscale Finite Element Methods , 2014, Multiscale Model. Simul..

[67]  Ralf Kornhuber,et al.  Numerical Homogenization of Elliptic Multiscale Problems by Subspace Decomposition , 2016, Multiscale Model. Simul..

[68]  Qin Li,et al.  Implicit Asymptotic Preserving Method for Linear Transport Equations , 2016, 1602.00746.

[69]  Qin Li,et al.  Validity and Regularization of Classical Half-Space Equations , 2016, 1606.01311.

[70]  Robert Lipton,et al.  Uncertain loading and quantifying maximum energy concentration within composite structures , 2016, J. Comput. Phys..

[71]  Daniel Peterseim,et al.  Eliminating the pollution effect in Helmholtz problems by local subscale correction , 2014, Math. Comput..

[72]  Houman Owhadi,et al.  Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..

[73]  Qin Li,et al.  Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations , 2017 .

[74]  Santosh Vempala,et al.  Randomized algorithms in numerical linear algebra , 2017, Acta Numerica.

[75]  Jianfeng Lu,et al.  A Concurrent Global–Local Numerical Method for Multiscale PDEs , 2016, J. Sci. Comput..

[76]  Kathrin Smetana,et al.  Randomized Local Model Order Reduction , 2017, SIAM J. Sci. Comput..

[77]  Ralf Kornhuber,et al.  An analysis of a class of variational multiscale methods based on subspace decomposition , 2016, Math. Comput..

[78]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[79]  Stephen J. Wright,et al.  Randomized Sampling for Basis Function Construction in Generalized Finite Element Methods , 2018, Multiscale Model. Simul..

[80]  Qin Li,et al.  A low-rank Schwarz method for radiative transport equation with heterogeneous scattering coefficient , 2019, Multiscale Model. Simul..