Nanoplasmonics and its Applied Devices

Nanoplasmonics makes a connection to conventional optics to the nanoworld. Interesting performance like subwavelength focusing to invisibility cloaking, nanoplasmonics have profound applications in science and engineering world from biophotonics to nanocircuitry. Metal and dielectric have free d-shell electrons. When metal and dielectric of different refractive index come in contact, these free electrons get accumulated in a region at the metal-semiconductor interface forming nanoplasmons. Practical implementation of nano device fabrication is the most challenging task due to the dissipative losses in metal. The optimum operating condition can be achieved by the efficient use of optical gain. We review here the ongoing progress in the field of nanoplasmonic research. Journal of Nanotechnology and Smart Materials J Nanotech Smart Mater 2014 | Vol 1:402

[1]  H. Lezec,et al.  Electrooptic modulation in thin film barium titanate plasmonic interferometers. , 2008, Nano letters.

[2]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[3]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[4]  Catherine J. Murphy,et al.  An Improved Synthesis of High‐Aspect‐Ratio Gold Nanorods , 2003 .

[5]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[6]  T. C. Green,et al.  Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles , 1996, Science.

[7]  Martin Wegener,et al.  Optical Metamaterials—More Bulky and Less Lossy , 2010, Science.

[8]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Junxi Zhang,et al.  Nanostructures for surface plasmons , 2012 .

[10]  C. Mirkin,et al.  Multipole plasmon resonances in gold nanorods. , 2006, The journal of physical chemistry. B.

[11]  Naomi J. Halas,et al.  Plasmonic Properties of Concentric Nanoshells , 2004 .

[12]  S. Bozhevolnyi,et al.  Slow-plasmon resonant nanostructures: Scattering and field enhancements , 2007 .

[13]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[14]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[15]  L. Novotný,et al.  Antennas for light , 2011 .

[16]  N. Zheludev,et al.  All-optical phase-change memory in a single gallium nanoparticle. , 2007, Physical review letters.

[17]  M. El-Sayed,et al.  Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. , 2006, Chemical Society reviews.

[18]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[19]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[21]  Linyou Cao,et al.  Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. , 2007, Nano letters.

[22]  Zhiyong Tang,et al.  Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires , 2002, Science.

[23]  Lukas Novotny,et al.  Near-field optical microscopy and spectroscopy with pointed probes. , 2006, Annual review of physical chemistry.

[24]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[25]  Younan Xia,et al.  Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process , 2003 .

[26]  H. Lezec,et al.  Multiple paths to enhance optical transmission through a single subwavelength slit. , 2003, Physical review letters.

[27]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[28]  Petru Ghenuche,et al.  Spectroscopic mode mapping of resonant plasmon nanoantennas. , 2008, Physical review letters.

[29]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[30]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[31]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[32]  Luis M. Liz-Marzán,et al.  Synthesis of Silver Nanoprisms in DMF , 2002 .

[33]  J. Fendler,et al.  MORPHOLOGY CONTROL OF PBS NANOCRYSTALLITES, EPITAXIALLY GROWN UNDER MIXED MONOLAYERS , 1995 .

[34]  Lukas Novotny,et al.  Characterization of nanoplasmonic structures by locally excited photoluminescence , 2003 .

[35]  Catherine J. Murphy,et al.  Wet chemical synthesis of silver nanorods and nanowiresof controllable aspect ratio , 2001 .

[36]  Ekmel Ozbay,et al.  Compact size highly directive antennas based on the SRR metamaterial medium , 2005 .

[37]  David L. Carroll,et al.  Synthesis and Characterization of Truncated Triangular Silver Nanoplates , 2002 .

[38]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[39]  Jean-Jacques Greffet,et al.  Resonant optical antennas , 2013, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[40]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[41]  C. Murphy Nanocubes and Nanoboxes , 2002, Science.

[42]  A. Nitzan,et al.  Theoretical model for enhanced photochemistry on rough surfaces , 1981 .

[43]  Mark L Brongersma,et al.  A nonvolatile plasmonic switch employing photochromic molecules. , 2008, Nano letters.

[44]  T. Ebbesen,et al.  Terahertz All‐Optical Molecule‐ Plasmon Modulation , 2006 .

[45]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[46]  Changtao Wang,et al.  Sub-diffraction-limited interference photolithography with metamaterials. , 2008, Optics express.

[47]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[48]  T. Moritz,et al.  Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization , 1999 .

[49]  Javier Aizpurua,et al.  Mapping the plasmon resonances of metallic nanoantennas. , 2008, Nano letters.

[50]  C. Mirkin,et al.  Controlling anisotropic nanoparticle growth through plasmon excitation , 2003, Nature.

[51]  S. L. Westcott,et al.  Infrared extinction properties of gold nanoshells , 1999 .

[52]  A. Alivisatos,et al.  Synthesis of hcp-Co Nanodisks. , 2002, Journal of the American Chemical Society.

[53]  Romain Quidant,et al.  Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .

[54]  T. Klar,et al.  Gold nanostoves for microsecond DNA melting analysis. , 2008, Nano letters.

[55]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[56]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[57]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[58]  Demetri Psaltis,et al.  Chemical separations by bubble-assisted interphase mass-transfer. , 2008, Analytical chemistry.

[59]  Yi Wang,et al.  Biosensor based on hydrogel optical waveguide spectroscopy. , 2010, Biosensors & bioelectronics.

[60]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[61]  Encai Hao,et al.  Synthesis and Optical Properties of ``Branched'' Gold Nanocrystals , 2004 .

[62]  Jean-Jacques Greffet,et al.  Thermal radiation scanning tunnelling microscopy , 2006, Nature.

[63]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[64]  J. Hupp,et al.  Synthesis of silver nanodisks using polystyrene mesospheres as templates. , 2002, Journal of the American Chemical Society.

[65]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[66]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[67]  Jae Hee Song,et al.  Photochemical synthesis of gold nanorods. , 2002, Journal of the American Chemical Society.

[68]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[69]  S. Dong,et al.  One-Pot Synthesis and Characterization of Novel Silver−Gold Bimetallic Nanostructures with Hollow Interiors and Bearing Nanospikes , 2003 .

[70]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[71]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[72]  R Atkinson,et al.  Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. , 2008, Optics express.

[73]  Ulrich Simon,et al.  Reversible photothermal melting of DNA in DNA-gold-nanoparticle networks. , 2008, Small.

[74]  C. Murphy Materials science. Nanocubes and nanoboxes. , 2002, Science.

[75]  K. R. Catchpolea,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[76]  Zongfu Yu,et al.  Extraordinary optical absorption through subwavelength slits. , 2009, Optics letters.

[77]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[78]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[79]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[80]  Louis E. Brus,et al.  Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+] , 2003 .

[81]  Bernhard Lamprecht,et al.  Design of multipolar plasmon excitations in silver nanoparticles , 2000 .

[82]  Naomi J. Halas,et al.  Silver Nanoshells: Variations in Morphologies and Optical Properties , 2001 .

[83]  F. Kulzer,et al.  Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. , 2009, Optics express.

[84]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[85]  Laurens Kuipers,et al.  Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence. , 2007, Nano letters.

[86]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[87]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[88]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[89]  Alexander Eychmüller,et al.  Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification , 1998 .

[90]  Cheng-Dah Chen,et al.  The Shape Transition of Gold Nanorods , 1999 .

[91]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[92]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[93]  V Sandoghdar,et al.  Optical microscopy via spectral modifications of a nanoantenna. , 2005, Physical review letters.

[94]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[95]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[96]  M. Brongersma,et al.  Thin film patterning by surface-plasmon-induced thermocapillarity , 2007 .

[97]  A. Hohenau,et al.  Surface enhanced Raman scattering arising from multipolar plasmon excitation. , 2005, The Journal of chemical physics.

[98]  Alfons van Blaaderen,et al.  Metallodielectric Colloidal Core−Shell Particles for Photonic Applications , 2002 .

[99]  Pengyu Fan,et al.  Resonant germanium nanoantenna photodetectors. , 2010, Nano letters.

[100]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[101]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[102]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .