The sensitivity method in finite element model updating: A tutorial (vol 25, pg 2275, 2010)

Abstract The sensitivity method is probably the most successful of the many approaches to the problem of updating finite element models of engineering structures based on vibration test data. It has been applied successfully to large-scale industrial problems and proprietary codes are available based on the techniques explained in simple terms in this article. A basic introduction to the most important procedures of computational model updating is provided, including tutorial examples to reinforce the reader’s understanding and a large scale model updating example of a helicopter airframe.

[1]  Hamid Ahmadian,et al.  Parameter Selection Strategies in Finite Element Model Updating , 1997 .

[2]  J. Mottershead,et al.  Vibration mode shape recognition using image processing , 2009 .

[3]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[4]  Scott Cogan,et al.  A robust model-based test planning procedure , 2005 .

[5]  Hamid Ahmadian,et al.  Generic element formulation for modelling bolted lap joints , 2007 .

[6]  Mehmet Imregun,et al.  Finite element model updating using frequency response function data. II. Case study on a medium-size finite element model , 1995 .

[7]  Hamid Ahmadian,et al.  Generic element matrices suitable for finite element model updating , 1995 .

[8]  R. Fox,et al.  Rates of change of eigenvalues and eigenvectors. , 1968 .

[9]  Michael Link,et al.  Stochastic model updating—Covariance matrix adjustment from uncertain experimental modal data , 2010 .

[10]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[11]  John E. Mottershead,et al.  Finite element model updating from full-field vibration measurement using digital image correlation , 2011 .

[12]  M. Friswell,et al.  Finite–element model updating using experimental test data: parametrization and regularization , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  John E. T. Penny,et al.  Updating model parameters from frequency domain data via reduced order models , 1990 .

[14]  Michael I. Friswell,et al.  The adjustment of structural parameters using a minimum variance estimator , 1989 .

[15]  John E. Mottershead,et al.  On the treatment of ill-conditioning in spatial parameter estimation from measured vibration data , 1991 .

[16]  Annalisa Fregolent,et al.  ON THE USE OF CONSISTENT AND SIGNIFICANT INFORMATION TO REDUCE ILL-CONDITIONING IN DYNAMIC MODEL UPDATING , 1998 .

[17]  Daniel J. Inman,et al.  TIME DOMAIN ANALYSIS FOR DAMAGE DETECTION IN SMART STRUCTURES , 1997 .

[18]  Jm M. Ko,et al.  An improved perturbation method for stochastic finite element model updating , 2008 .

[19]  Nicholas A J Lieven,et al.  Proceedings of the International Modal Analysis Conference (IMAC) , 2001 .

[20]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[21]  Branislav Titurus,et al.  Regularization in model updating , 2008 .

[22]  John E. Mottershead,et al.  Physical Realization of Generic-Element Parameters in Model Updating , 2002 .

[23]  John E. Mottershead,et al.  Clustering of parameter sensitivities: Examples from a helicopter airframe model updating exercise , 2009 .

[24]  M. Böswald,et al.  Identification of Non-linear Joint Parameters by using Frequency Response Residuals , 2005 .

[25]  Milena Martarelli,et al.  Measuring area vibration mode shapes with a continuous-scan LDV , 2000, International Conference on Vibration Measurements by Laser Techniques: Advances and Applications.

[26]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[27]  Michael Link,et al.  Modelling and updating of local non-linearities using frequency response residuals , 2003 .

[28]  F. Hemez,et al.  REVIEW AND ASSESSMENT OF MODEL UPDATING FOR NON-LINEAR, TRANSIENT DYNAMICS , 2001 .

[29]  John E. Mottershead,et al.  Combining Subset Selection and Parameter Constraints in Model Updating , 1998 .

[30]  U. Prells,et al.  A regularization method for the linear error localization of models of elastomechanical systems , 1996 .

[31]  M. Friswell,et al.  Perturbation methods for the estimation of parameter variability in stochastic model updating , 2008 .

[32]  S. S. Law,et al.  Features of dynamic response sensitivity and its application in damage detection , 2007 .

[33]  John E. Mottershead,et al.  Geometric Parameters for Finite Element Model Updating of Joints and Constraints , 1996 .

[34]  John E. Mottershead,et al.  SELECTION AND UPDATING OF PARAMETERS FOR AN ALUMINIUM SPACE-FRAME MODEL , 2000 .

[35]  Hans Günther Natke,et al.  Einführung in Theorie und Praxis der Zeitreihen- und Modalanalyse , 1983 .

[36]  Hubert W. Schreier,et al.  Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .

[37]  J. Mottershead,et al.  Mode-shape recognition and finite element model updating using the Zernike moment descriptor , 2009 .

[38]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[39]  Jon D. Collins,et al.  Statistical Identification of Structures , 1973 .

[40]  Thorsten Siebert,et al.  High speed image correlation for vibration analysis , 2009 .

[41]  Christian Soize Random matrix theory and non-parametric model of random uncertainties in vibration analysis , 2003 .

[42]  Mehmet Imregun,et al.  Finite element model updating using frequency response function data: I. Theory and initial investigation , 1995 .

[43]  Patrick Paultre,et al.  Consistent regularization of nonlinear model updating for damage identification , 2009 .

[44]  Michael Link,et al.  Identification of Structural Property Degradations by Computational Model Updating , 2007 .

[45]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[46]  Christian Soize,et al.  Robust Updating of Uncertain Computational Models Using Experimental Modal Analysis , 2008 .

[47]  H. G. Natke,et al.  Properties of various residuals within updating of mathematical models , 1995 .

[48]  A. H,et al.  REGULARISATION METHODS FOR FINITE ELEMENT MODEL UPDATING , 1998 .

[49]  Michael Link,et al.  Damage identification by multi-model updating in the modal and in the time domain , 2009 .

[50]  J. Mottershead,et al.  Interval model updating with irreducible uncertainty using the Kriging predictor , 2011 .

[51]  Annalisa Fregolent,et al.  THE USE OF ANTIRESONANCES FOR ROBUST MODEL UPDATING , 2000 .