Bilinear spatiotemporal basis models

A variety of dynamic objects, such as faces, bodies, and cloth, are represented in computer graphics as a collection of moving spatial landmarks. Spatiotemporal data is inherent in a number of graphics applications including animation, simulation, and object and camera tracking. The principal modes of variation in the spatial geometry of objects are typically modeled using dimensionality reduction techniques, while concurrently, trajectory representations like splines and autoregressive models are widely used to exploit the temporal regularity of deformation. In this article, we present the bilinear spatiotemporal basis as a model that simultaneously exploits spatial and temporal regularity while maintaining the ability to generalize well to new sequences. This factorization allows the use of analytical, predefined functions to represent temporal variation (e.g., B-Splines or the Discrete Cosine Transform) resulting in efficient model representation and estimation. The model can be interpreted as representing the data as a linear combination of spatiotemporal sequences consisting of shape modes oscillating over time at key frequencies. We apply the bilinear model to natural spatiotemporal phenomena, including face, body, and cloth motion data, and compare it in terms of compaction, generalization ability, predictive precision, and efficiency to existing models. We demonstrate the application of the model to a number of graphics tasks including labeling, gap-filling, denoising, and motion touch-up.

[1]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[4]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[5]  E. Ziegel Matrix Differential Calculus With Applications in Statistics and Econometrics , 1989 .

[6]  K. Mardia,et al.  Shape distributions for landmark data , 1989, Advances in Applied Probability.

[7]  P. Yip,et al.  Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .

[8]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[9]  D. Kendall,et al.  The Riemannian Structure of Euclidean Shape Spaces: A Novel Environment for Statistics , 1993 .

[10]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[11]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[12]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[13]  Michael Gleicher,et al.  Motion editing with spacetime constraints , 1997, SI3D.

[14]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[15]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[16]  Michael Gleicher,et al.  Constraint-based motion adaptation , 1998, Comput. Animat. Virtual Worlds.

[17]  David J. Fleet,et al.  Stochastic Tracking of 3D Human Figures Using 2D Image Motion , 2000, ECCV.

[18]  Joshua B. Tenenbaum,et al.  Separating Style and Content with Bilinear Models , 2000, Neural Computation.

[19]  Henning Biermann,et al.  Recovering non-rigid 3D shape from image streams , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[20]  Michael Gleicher,et al.  Comparing Constraint-Based Motion Editing Methods , 2001, Graph. Model..

[21]  D Thalmann,et al.  Using skeleton-based tracking to increase the reliability of optical motion capture. , 2001, Human movement science.

[22]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[23]  Lorenzo Torresani,et al.  Space-Time Tracking , 2002, ECCV.

[24]  Milan Sonka,et al.  3-D active appearance models: segmentation of cardiac MR and ultrasound images , 2002, IEEE Transactions on Medical Imaging.

[25]  N. Troje Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. , 2002, Journal of vision.

[26]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[27]  Demetri Terzopoulos,et al.  TensorTextures: multilinear image-based rendering , 2004, ACM Trans. Graph..

[28]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[29]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[30]  Daniel Rueckert,et al.  Spatio-Temporal Free-Form Registration of Cardiac MR Image Sequences , 2004, MICCAI.

[31]  Pascal Fua,et al.  Style‐Based Motion Synthesis † , 2004, Comput. Graph. Forum.

[32]  Ghassan Hamarneh,et al.  Deformable spatio-temporal shape models: extending active shape models to 2D+time , 2004, Image Vis. Comput..

[33]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[34]  Narendra Ahuja,et al.  Out-of-core tensor approximation of multi-dimensional matrices of visual data , 2005, ACM Trans. Graph..

[35]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH 2005.

[36]  Jessica K. Hodgins,et al.  Performance animation from low-dimensional control signals , 2005, SIGGRAPH 2005.

[37]  Hanspeter Pfister,et al.  Face transfer with multilinear models , 2005, ACM Trans. Graph..

[38]  Dragomir Anguelov,et al.  SCAPE: shape completion and animation of people , 2005, ACM Trans. Graph..

[39]  Christoph Bregler,et al.  Mood swings: expressive speech animation , 2005, TOGS.

[40]  Daniel Rueckert,et al.  Fast Spatio-temporal Free-Form Registration of Cardiac MR Image Sequences , 2004, FIMH.

[41]  Leif Kobbelt,et al.  Self-calibrating optical motion tracking for articulated bodies , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[42]  N. Ahuja,et al.  Out-of-core tensor approximation of multi-dimensional matrices of visual data , 2005, SIGGRAPH 2005.

[43]  Daniel Rueckert,et al.  Fast Spatio-temporal Free-Form Registration of Cardiac MR Image Sequences , 2005, FIMH.

[44]  Guodong Liu,et al.  Estimation of missing markers in human motion capture , 2006, The Visual Computer.

[45]  Okan Arikan Compression of motion capture databases , 2006, ACM Trans. Graph..

[46]  Okan Arikan Compression of motion capture databases , 2006, SIGGRAPH 2006.

[47]  Sang Il Park,et al.  Capturing and animating skin deformation in human motion , 2006, ACM Trans. Graph..

[48]  Jessica K. Hodgins,et al.  Capturing and animating skin deformation in human motion , 2006, SIGGRAPH 2006.

[49]  Alejandro F. Frangi,et al.  Bilinear Models for Spatio-Temporal Point Distribution Analysis , 2009, 2007 IEEE 11th International Conference on Computer Vision.

[50]  Wojciech Matusik,et al.  Factored time-lapse video , 2007, SIGGRAPH 2007.

[51]  Leonidas J. Guibas,et al.  Eurographics Symposium on Geometry Processing (2007) Reconstruction of Deforming Geometry from Time-varying Point Clouds , 2022 .

[52]  D. Forsyth,et al.  Capturing and animating occluded cloth , 2007, SIGGRAPH '07.

[53]  Wojciech Matusik,et al.  Factored time-lapse video , 2007, ACM Trans. Graph..

[54]  Hans-Peter Seidel,et al.  Performance capture from sparse multi-view video , 2008, ACM Trans. Graph..

[55]  David J. Fleet,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE Gaussian Process Dynamical Model , 2007 .

[56]  Takeo Kanade,et al.  Nonrigid Structure from Motion in Trajectory Space , 2008, NIPS.

[57]  David I. Laibson,et al.  The Seven Properties of Good Models , 2008 .

[58]  Christos Faloutsos,et al.  DynaMMo: mining and summarization of coevolving sequences with missing values , 2009, KDD.

[59]  Yen-Lin Chen,et al.  Interactive generation of human animation with deformable motion models , 2009, TOGS.

[60]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[61]  Mark Pauly,et al.  Example-based facial rigging , 2010, SIGGRAPH 2010.

[62]  Ken-ichi Anjyo,et al.  Direct Manipulation Blendshapes , 2010, IEEE Computer Graphics and Applications.

[63]  Edilson de Aguiar,et al.  Stable spaces for real-time clothing , 2010, ACM Trans. Graph..

[64]  Jinxiang Chai,et al.  Synthesis and editing of personalized stylistic human motion , 2010, I3D '10.

[65]  M. Pauly,et al.  Example-based facial rigging , 2010, ACM Trans. Graph..

[66]  David J. Fleet,et al.  Human Attributes from 3D Pose Tracking , 2010, ECCV.

[67]  Christos Faloutsos,et al.  BoLeRO: a principled technique for including bone length constraints in motion capture occlusion filling , 2010, SCA '10.

[68]  Jinxiang Chai,et al.  Example-Based Human Motion Denoising , 2010, IEEE Transactions on Visualization and Computer Graphics.

[69]  Aleix M. Martínez,et al.  Computing Smooth Time Trajectories for Camera and Deformable Shape in Structure from Motion with Occlusion , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Takeo Kanade,et al.  Trajectory Space: A Dual Representation for Nonrigid Structure from Motion , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  David J. Fleet,et al.  Human attributes from 3D pose tracking , 2010, Comput. Vis. Image Underst..

[72]  Anuj Srivastava,et al.  Statistical Shape Analysis , 2014, Computer Vision, A Reference Guide.

[73]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.