Observer design for rectangular descriptor systems with incremental quadratic constraints and nonlinear outputs—Application to secure communications

[1]  Hieu Minh Trinh,et al.  State and input simultaneous estimation for a class of nonlinear systems , 2004, Autom..

[2]  Qingling Zhang,et al.  Complexity, Analysis and Control of Singular Biological Systems , 2012 .

[3]  Junqi Yang,et al.  Singular reduced-order observer-based synchronization for uncertain chaotic systems subject to channel disturbance and chaos-based secure communication , 2014, Appl. Math. Comput..

[4]  Mingming Ji,et al.  Adaptive State Observers for Incrementally Quadratic Nonlinear Systems with Application to Chaos Synchronization , 2020, Circuits Syst. Signal Process..

[5]  Maria Filomena Barros,et al.  The Samuelson macroeconomic model as a singular linear matrix difference equation , 2020 .

[6]  Gregery T. Buzzard,et al.  Unknown Input Estimation for Nonlinear Systems Using Sliding Mode Observers and Smooth Window Functions , 2018, SIAM J. Control. Optim..

[7]  Murat Arcak,et al.  Observer design for systems with multivariable monotone nonlinearities , 2003, Syst. Control. Lett..

[8]  M. Rehan,et al.  Observer design for one-sided Lipschitz descriptor systems , 2016 .

[9]  Gregery T. Buzzard,et al.  State and Unknown Input Observers for Nonlinear Systems With Bounded Exogenous Inputs , 2017, IEEE Transactions on Automatic Control.

[10]  Ricardo Riaza,et al.  Differential-Algebraic Systems: Analytical Aspects and Circuit Applications , 2008 .

[11]  Shovan Bhaumik,et al.  Full- and reduced-order observer design for rectangular descriptor systems with unknown inputs , 2015, J. Frankl. Inst..

[12]  Karthikeyan Rajagopal,et al.  Modification of the Logistic Map Using Fuzzy Numbers with Application to Pseudorandom Number Generation and Image Encryption , 2020, Entropy.

[13]  Martin Corless,et al.  Estimating unbounded unknown inputs in nonlinear systems , 2019, Automatica.

[14]  Emilia Fridman,et al.  State and unknown input observers for nonlinear systems with delayed measurements , 2018, Autom..

[15]  Christos Volos,et al.  Analysis of a Chaotic System with Line Equilibrium and Its Application to Secure Communications Using a Descriptor Observer , 2019, Technologies.

[16]  Habib Dimassi,et al.  A new secured transmission scheme based on chaotic synchronization via smooth adaptive unknown-input observers , 2012 .

[17]  S. Bhaumik,et al.  On detectability and observer design for rectangular linear descriptor systems , 2016 .

[18]  G. Duan Analysis and Design of Descriptor Linear Systems , 2010 .

[19]  Teh-Lu Liao,et al.  An observer-based approach for chaotic synchronization with applications to secure communications , 1999 .

[20]  Peter C. Müller,et al.  Observer design for descriptor systems , 1999, IEEE Trans. Autom. Control..

[21]  Qiang Jia,et al.  Hyperchaos generated from the Lorenz chaotic system and its control , 2007 .

[22]  Mohamed Darouach,et al.  Observers for a Class of Nonlinear Singular Systems , 2008, IEEE Transactions on Automatic Control.

[23]  P. Müller,et al.  On the observer design for descriptor systems , 1993, IEEE Trans. Autom. Control..

[24]  Behçet Açikmese,et al.  Observers for systems with nonlinearities satisfying incremental quadratic constraints , 2011, Autom..

[25]  Athanasios A. Pantelous,et al.  Closed form solution for the equations of motion for constrained linear mechanical systems and generalizations: An algebraic approach , 2017, J. Frankl. Inst..

[26]  Gregery T. Buzzard,et al.  Simultaneous Unknown Input And Sensor Noise Reconstruction For Nonlinear Systems With Boundary Layer Sliding Mode Observers , 2015, ArXiv.

[27]  S. Bhaumik,et al.  Observer Design for Semilinear Descriptor Systems with Applications to Chaos-Based Secure Communication , 2017 .

[28]  Mohamed Darouach,et al.  Unknown inputs observer design for descriptor systems with monotone nonlinearities , 2018, International Journal of Robust and Nonlinear Control.

[29]  Mahendra Kumar Gupta,et al.  Synchronization of Rossler chaotic system for secure communication via descriptor observer design approach , 2015, 2015 International Conference on Signal Processing, Computing and Control (ISPCC).

[30]  Shou-Wei Gao,et al.  Singular observer approach for chaotic synchronization and private communication , 2011 .

[31]  Mohamed Darouach,et al.  H∞ observers design for a class of nonlinear singular systems , 2011, Autom..

[32]  Zhisheng Duan,et al.  Brief Paper - Unknown input observer design for systems with monotone non-linearities , 2012 .

[33]  M. Darouach,et al.  Reduced-order observer design for descriptor systems with unknown inputs , 1996, IEEE Trans. Autom. Control..

[34]  Housheng Su,et al.  Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations , 2012 .

[35]  M. Boutayeb,et al.  Generalized state-space observers for chaotic synchronization and secure communication , 2002 .

[36]  Wei Zhang,et al.  Exponential State Observers for Nonlinear Systems with Incremental Quadratic Constraints and Output Nonlinearities , 2018 .

[37]  Daniel W. C. Ho,et al.  Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[38]  Junqi Yang,et al.  Observer-Based Synchronization of Chaotic Systems Satisfying Incremental Quadratic Constraints and Its Application in Secure Communication , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[39]  S. Bhaumik,et al.  Observer Design for Descriptor Systems with Lipschitz Nonlinearities : an LMI Approach , 2014 .

[40]  T. Chai,et al.  Nonlinear observers for a class of nonlinear descriptor systems , 2013 .

[41]  Shovan Bhaumik,et al.  Detectability and observer design for linear descriptor systems , 2014, 22nd Mediterranean Conference on Control and Automation.