Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design. © 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

[1]  E. Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[2]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[3]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[4]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[5]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[6]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[7]  D. Langreth,et al.  Density functional theory including Van Der Waals forces , 1995 .

[8]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[9]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[10]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[11]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[12]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[13]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[14]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[15]  Gerbrand Ceder,et al.  Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research , 2006 .

[16]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[17]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[18]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[19]  Alex Zunger,et al.  Searching for alloy configurations with target physical properties: impurity design via a genetic algorithm inverse band structure approach. , 2006, Physical review letters.

[20]  David S Sholl,et al.  Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. , 2006, The journal of physical chemistry. B.

[21]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[22]  Zhigang Zak Fang,et al.  Potential of Binary Lithium Magnesium Nitride for Hydrogen Storage Applications , 2007 .

[23]  Stephan Lany,et al.  Semiconductor Thermochemistry in Density Functional Calculations , 2008 .

[24]  M. Klintenberg,et al.  Data mining and accelerated electronic structure theory as a tool in the search for new functional materials , 2008, 0808.2125.

[25]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[26]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[27]  Sanford L. Moskowitz The Advanced Materials Revolution: Technology and Economic Growth in the Age of Globalization , 2009 .

[28]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[29]  G. Ceder,et al.  Efficient band gap prediction for solids. , 2010, Physical review letters.

[30]  Anubhav Jain,et al.  Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations , 2010 .

[31]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[32]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[33]  Stefano Curtarolo,et al.  Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations , 2011 .

[34]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[35]  Gerbrand Ceder,et al.  Screening for high-performance piezoelectrics using high-throughput density functional theory , 2011 .

[36]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[37]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[38]  Stefano Curtarolo,et al.  High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. , 2011, ACS combinatorial science.

[39]  M. Obrovac,et al.  Alloy Negative Electrodes for High Energy Density Metal-Ion Cells , 2011 .

[40]  Anubhav Jain,et al.  Synthesis and Electrochemical Properties of Monoclinic LiMnBO3 as a Li Intercalation Material , 2011 .

[41]  Anubhav Jain,et al.  Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations , 2011 .

[42]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[43]  Stefano Curtarolo,et al.  A search model for topological insulators with high-throughput robustness descriptors. , 2012, Nature materials.

[44]  Alex Zunger,et al.  Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. , 2012, Physical review letters.

[45]  Gerbrand Ceder,et al.  Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. , 2012, Journal of the American Chemical Society.

[46]  Anubhav Jain,et al.  From the computer to the laboratory: materials discovery and design using first-principles calculations , 2012, Journal of Materials Science.

[47]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[48]  Anubhav Jain,et al.  A Computational Investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as Cathodes for Li Ion Batteries , 2012 .

[49]  Liping Yu,et al.  Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. , 2012, Physical review letters.

[50]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[51]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[52]  Kristin A. Persson,et al.  Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states , 2012 .

[53]  Anubhav Jain,et al.  Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally , 2012 .

[54]  J. Nørskov,et al.  CatApp: a web application for surface chemistry and heterogeneous catalysis. , 2012, Angewandte Chemie.

[55]  Thomas F. Jaramillo,et al.  New cubic perovskites for one- and two-photon water splitting using the computational materials repository , 2012 .

[56]  James R. Rustad,et al.  Density functional calculations of the enthalpies of formation of rare-earth orthophosphates , 2012 .

[57]  B. Meredig,et al.  Approaching chemical accuracy with density functional calculations: Diatomic energy corrections , 2013 .

[58]  M. Geisler,et al.  Phase stability of chromium based compensated ferrimagnets with inverse Heusler structure , 2013, 1302.2487.

[59]  Jens S. Hummelshøj,et al.  Formation energies of group I and II metal oxides using random phase approximation , 2013 .