Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation

[1]  Kôzô Inoue With Complement , 2018, Journal of Innate Immunity.

[2]  J. Mascola,et al.  In vitro reconstitution of B cell receptor–antigen interactions to evaluate potential vaccine candidates , 2016, Nature Protocols.

[3]  R. Koup,et al.  H5N1 Vaccine–Elicited Memory B Cells Are Genetically Constrained by the IGHV Locus in the Recognition of a Neutralizing Epitope in the Hemagglutinin Stem , 2015, The Journal of Immunology.

[4]  T. Stehle,et al.  The sweet spot: defining virus–sialic acid interactions , 2014, Nature Reviews Microbiology.

[5]  G. Air Influenza virus-glycan interactions. , 2014, Current opinion in virology.

[6]  D. Seshasayee,et al.  In vivo antigen-driven plasmablast enrichment in combination with antigen-specific cell sorting to facilitate the isolation of rare monoclonal antibodies from human B cells , 2014, Nature Protocols.

[7]  T. Stehle,et al.  Rules and Exceptions: Sialic Acid Variants and Their Role in Determining Viral Tropism , 2014, Journal of Virology.

[8]  Kai Ludwig,et al.  Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. , 2014, Biochimica et biophysica acta.

[9]  Gregory M. Frank,et al.  Flow Cytometry Reveals that H5N1 Vaccination Elicits Cross-Reactive Stem-Directed Antibodies from Multiple Ig Heavy-Chain Lineages , 2014, Journal of Virology.

[10]  M. Roger,et al.  Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production , 2014, Analytical and Bioanalytical Chemistry.

[11]  Baoshan Zhang,et al.  Structural basis for diverse N-glycan recognition by HIV-1–neutralizing V1–V2–directed antibody PG16 , 2013, Nature Structural &Molecular Biology.

[12]  J. Whittle,et al.  Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies , 2013, Nature.

[13]  N. Giltiay,et al.  Extrafollicular B cell activation by marginal zone dendritic cells drives T cell–dependent antibody responses , 2012, The Journal of experimental medicine.

[14]  J. Whittle,et al.  Structural and genetic basis for development of broadly neutralizing influenza antibodies , 2012, Nature.

[15]  M. Carroll,et al.  Regulation of humoral immunity by complement. , 2012, Immunity.

[16]  T. Tedder,et al.  CD22 and Siglec-G in B cell function and tolerance. , 2012, Trends in immunology.

[17]  B. Treanor B‐cell receptor: from resting state to activate , 2012, Immunology.

[18]  Young Do Kwon,et al.  Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9 , 2011, Nature.

[19]  Surender Khurana,et al.  Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin , 2011, Proceedings of the National Academy of Sciences.

[20]  M. Reth,et al.  Syk is a dual-specificity kinase that self-regulates the signal output from the B-cell antigen receptor , 2010, Proceedings of the National Academy of Sciences.

[21]  M. Reth,et al.  Oligomeric organization of the B-cell antigen receptor on resting cells , 2010, Nature.

[22]  G. Nabel,et al.  Induction of Broadly Neutralizing H1N1 Influenza Antibodies by Vaccination , 2010, Science.

[23]  Mario Roederer,et al.  Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1 , 2010, Science.

[24]  Chih-Jen Wei,et al.  Cross-Neutralization of 1918 and 2009 Influenza Viruses: Role of Glycans in Viral Evolution and Vaccine Design , 2010, Science Translational Medicine.

[25]  Jan Berka,et al.  Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire , 2009, Proceedings of the National Academy of Sciences.

[26]  Gira Bhabha,et al.  Antibody Recognition of a Highly Conserved Influenza Virus Epitope , 2009, Science.

[27]  Jason K. Pontrello,et al.  Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation , 2009, Proceedings of the National Academy of Sciences.

[28]  Ryan M. O’Connell,et al.  Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes. , 2009, Blood.

[29]  M. Diamond,et al.  Early B-Cell Activation after West Nile Virus Infection Requires Alpha/Beta Interferon but Not Antigen Receptor Signaling , 2008, Journal of Virology.

[30]  Yehia Mechref,et al.  High-throughput solid-phase permethylation of glycans prior to mass spectrometry. , 2008, Rapid communications in mass spectrometry : RCM.

[31]  D. Engelman,et al.  Protein area occupancy at the center of the red blood cell membrane , 2008, Proceedings of the National Academy of Sciences.

[32]  R. Roozendaal,et al.  Complement receptors CD21 and CD35 in humoral immunity , 2007, Immunological reviews.

[33]  M. Lederman,et al.  TLR9 stimulation drives naïve B cells to proliferate and to attain enhanced antigen presenting function , 2007, European journal of immunology.

[34]  Carl S. Goodyear,et al.  Confounding B-cell defences: lessons from a staphylococcal superantigen , 2006, Nature Reviews Immunology.

[35]  R. Couch,et al.  Dose-related safety and immunogenicity of a trivalent baculovirus-expressed influenza-virus hemagglutinin vaccine in elderly adults. , 2006, The Journal of infectious diseases.

[36]  Ruslan Medzhitov,et al.  Control of B-cell responses by Toll-like receptors , 2005, Nature.

[37]  A. Varki,et al.  Cell surface sialic acids do not affect primary CD22 interactions with CD45 and surface IgM nor the rate of constitutive CD22 endocytosis. , 2004, Glycobiology.

[38]  Mark M. Davis The evolutionary and structural 'logic' of antigen receptor diversity. , 2004, Seminars in immunology.

[39]  A. Weiss,et al.  Jurkat T cells and development of the T-cell receptor signalling paradigm , 2004, Nature Reviews Immunology.

[40]  D. J. Stevens,et al.  The Structure and Receptor Binding Properties of the 1918 Influenza Hemagglutinin , 2004, Science.

[41]  A. Mantovani,et al.  The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. , 2003, Blood.

[42]  M. Neuberger,et al.  Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines , 2002, Nature Biotechnology.

[43]  David Baltimore,et al.  Germline Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral Vectors , 2002, Science.

[44]  M. Reth,et al.  The serine and threonine residues in the Ig-alpha cytoplasmic tail negatively regulate immunoreceptor tyrosine-based activation motif-mediated signal transduction. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Xu,et al.  Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. , 2000, Immunity.

[46]  B. Wimer Immunosuppressive applications of PHA and other plant mitogens. , 1998, Cancer biotherapy & radiopharmaceuticals.

[47]  J. Skehel,et al.  Studies of the binding properties of influenza hemagglutinin receptor-site mutants. , 1998, Virology.

[48]  F. Gage,et al.  Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P. Rabinovitch,et al.  Improved sensitivity in flow cytometric intracellular ionized calcium measurement using fluo-3/Fura Red fluorescence ratios. , 1994, Cytometry.

[50]  Y. Isegawa,et al.  A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains , 1993, Journal of virology.

[51]  H. Metzger,et al.  Transmembrane signaling: the joy of aggregation. , 1992, Journal of immunology.

[52]  R. Beuerman,et al.  EGF cell surface receptor quantitation on ocular cells by an immunocytochemical flow cytometry technique. , 1992, Investigative Ophthalmology and Visual Science.

[53]  V. Pascual,et al.  B-cell superantigens? , 1991, Current Biology.

[54]  Ionel Ciucanu,et al.  A simple and rapid method for the permethylation of carbohydrates , 1984 .

[55]  U. Hämmerling,et al.  The role of glycosylation in secretion and membrane expression of immunoglobulins M and A. , 1984, Molecular immunology.

[56]  M. Reth,et al.  Receptor Dissociation and B-Cell Activation. , 2016, Current topics in microbiology and immunology.

[57]  E. Lorentzen,et al.  Complex Reconstitution from Individual Protein Modules. , 2016, Advances in experimental medicine and biology.

[58]  G. Mutwiri,et al.  Modulation of B cell responses by Toll-like receptors , 2010, Cell and Tissue Research.

[59]  A. Mantovani,et al.  The toll-like receptor repertoire of human B lymphocytes : inducible and selective expression of TLR 9 and TLR 10 in normal and transformed cells , 2003 .

[60]  J. Skehel,et al.  Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. , 2000, Annual review of biochemistry.

[61]  P. Campbell,et al.  Stimulation of B cells, but not T cells or thymocytes, by a sialic acid-specific lectin. , 1982, Immunology.

[62]  F. Seiler,et al.  [Structure and function of immunoglobulins]. , 1982, Beitrage zu Infusionstherapie und klinische Ernahrung.

[63]  L. Hammarström,et al.  Polyclonal human T lymphocyte activation results in the secondary functional activation of the human B lymphocyte. , 1981, Clinical and experimental immunology.