Linear nonbinary covering codes and saturating sets in projective spaces

Let $\mathcal A$R,q denote a family of covering codes, in which the covering radius $R$ and the size $q$ of the underlying Galois field are fixed, while the code length tends to infinity. The construction of families with small asymptotic covering densities is a classical problem in the area of Covering Codes.    In this paper, infinite sets of families $\mathcal A$R,q, where $R$ is fixed but $q$ ranges over an infinite set of prime powers are considered, and the dependence on $q$ of the asymptotic covering densities of $\mathcal A$R,q is investigated. It turns out that for the upper limit $\mu$q*(R,$\mathcal A$R,q) of the covering density of $\mathcal A$R,q, the best possibility is $\mu$q*(R,$\mathcal A$R,q)=$O(q)$. The main achievement of the present paper is the construction of optimal infinite sets of families $\mathcal A$R,q, that is, sets of families such that relation $\mu$q*(R,$\mathcal A$R,q)=$O(q)$ holds, for any covering radius $R\geq 2$.    We first showed that for a given $R$, to obtain optimal infinite sets of families it is enough to construct $R$ infinite families $\mathcal A$R,q(0), $\mathcal A$R,q(1), $\ldots$, $\mathcal A$R,q(R-1) such that, for all $u\geq u$0, the family $\mathcal A$R,q($\gamma$) contains codes of codimension $r$u$=Ru + \gamma$ and length $f$q($\gamma$)($r$u) where $f$q($\gamma$)$(r)=O(q$(r-R)/R$)$ and $u$0 is a constant. Then, we were able to construct the necessary families $\mathcal A$R,q($\gamma$) for any covering radius $R\geq 2$, with $q$ ranging over the (infinite) set of $R$-th powers. A result of independent interest is that in each of these families $\mathcal A$R,q($\gamma$), the lower limit of the covering density is bounded from above by a constant independent of $q$.    The key tool in our investigation is the design of new small saturating sets in projective spaces over finite fields, which are used as the starting point for the $q$m-concatenating constructions of covering codes. A new concept of $N$-fold strong blocking set is introduced. As a result of our investigation, many new asymptotic and finite upper bounds on the length function of covering codes and on the smallest sizes of saturating sets, are also obtained. Updated tables for these upper bounds are provided. An analysis and a survey of the known results are presented.

[1]  Gérard D. Cohen,et al.  Duality between packings and coverings of the Hamming space , 2005, IEEE Information Theory Workshop, 2005..

[2]  Jessica J. Fridrich,et al.  Constructing Good Covering Codes for Applications in Steganography , 2008, Trans. Data Hiding Multim. Secur..

[3]  Stefano Marcugini,et al.  Linear covering codes over nonbinary finite fields , 2008 .

[4]  Massimo Giulietti,et al.  On Dense Sets Related To Plane Algebraic Curves , 2004, Ars Comb..

[5]  Torleiv Kløve,et al.  On the Newton and covering radii of linear codes , 1999, IEEE Trans. Inf. Theory.

[6]  Endre Boros,et al.  On defining sets for projective planes , 2005, Discret. Math..

[7]  Alexander Barg,et al.  Bounds on the Covering Radius of Linear Codes , 2002, Des. Codes Cryptogr..

[8]  Gregory A. Kabatiansky,et al.  Information hiding by coverings , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[9]  Tsonka Stefanova Baicheva,et al.  Covering radii of ternary linear codes of small dimensions and codimensions , 1997, IEEE Trans. Inf. Theory.

[10]  J. Hirschfeld,et al.  The packing problem in statistics, coding theory and finite projective spaces : update 2001 , 2001 .

[11]  Jehoshua Bruck,et al.  Partial-sum queries in OLAP data cubes using covering codes , 1997, PODS '97.

[12]  Simeon Ball,et al.  On the Size of a Double Blocking Set inPG(2,q) , 1996 .

[13]  Emanuela Ughi,et al.  Saturated Configurations of Points in Projective Galois Spaces , 1987, Eur. J. Comb..

[14]  P. Tichý Constructions , 1986, Philosophy of Science.

[15]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[16]  Tuvi Etzion,et al.  Quasi-perfect codes with small distance , 2005, IEEE Transactions on Information Theory.

[17]  Ivan N. Landjev Linear codes over finite fields and finite projective geometries , 2000, Discret. Math..

[18]  Stefano Marcugini,et al.  Minimal 1-saturating sets in PG(2, q), q≤16 , 2003, Australas. J Comb..

[19]  T.S. Baicheva On the covering radius of ternary negacyclic codes with length up to 26 , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[20]  Alexander A. Davydov,et al.  Constructions and families of nonbinary linear codes with covering radius 2 , 1999, IEEE Trans. Inf. Theory.

[21]  Iiro S. Honkala,et al.  On lengthening of covering codes , 1992, Discret. Math..

[22]  Klavdija Kutnar,et al.  A NOTE ON A GEOMETRIC CONSTRUCTION OF LARGE CAYLEY GRAPHS OF GIVEN DEGREE AND DIAMETER , 2009 .

[23]  S. Kovács,et al.  Small saturated sets in finite projective planes S , 2022 .

[24]  A. A. Davydov,et al.  Constructions, families, and tables of binary linear covering codes , 1994, IEEE Trans. Inf. Theory.

[25]  Richard M. Wilson,et al.  Short codes with a given coveting radius , 1989, IEEE Trans. Inf. Theory.

[26]  Aileen Mary Mcloughlin,et al.  On the covering radius. , 1977 .

[27]  Massimo Giulietti,et al.  On Small Dense Sets in Galois Planes , 2007, Electron. J. Comb..

[28]  Massimo Giulietti,et al.  Quasi-Perfect Linear Codes With Minimum Distance $4$ , 2007, IEEE Transactions on Information Theory.

[30]  Patric R. J. Östergård,et al.  New Constructions for q-ary Covering Codes , 1999, Ars Comb..

[31]  Gérard D. Cohen,et al.  Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.

[32]  Massimo Giulietti,et al.  Small complete caps in PG(N, q), q even , 2007 .

[33]  Patric R. J. Östergård,et al.  Upper bounds for q-ary covering codes , 1991, IEEE Trans. Inf. Theory.

[34]  Heeralal Janwa,et al.  Some Optimal Codes from Algebraic Geometry and Their Covering Radii , 1990, Eur. J. Comb..

[35]  Patric R. J. Östergård Classifying Subspaces of Hamming Spaces , 2002, Des. Codes Cryptogr..

[36]  Iiro S. Honkala,et al.  On (k, t) -subnormal covering codes , 1991, IEEE Trans. Inf. Theory.

[37]  Alexander A. Davydov Constructions of Codes with Covering Radius 2 , 1991, Algebraic Coding.

[38]  Benny Sudakov,et al.  Covering codes with improved density , 2003, IEEE Transactions on Information Theory.

[39]  Patric R. J. Östergård,et al.  On Saturating Sets in Small Projective Geometries , 2000, Eur. J. Comb..

[40]  Stefano Marcugini,et al.  New inductive constructions of complete caps in PG(N, q), q even , 2009, 0901.0367.

[41]  Daniele Bartoli,et al.  On sizes of complete arcs in PG(2, q) , 2010, Discret. Math..

[42]  Alexander A. Davydov Constructions of nonlinear covering codes , 1997, IEEE Trans. Inf. Theory.

[43]  Patric R. J. Östergård,et al.  New Linear Codes with Covering Radius 2 and Odd Basis , 1999, Des. Codes Cryptogr..

[44]  Alexander A. Davydov,et al.  Constructions and families of covering codes and saturated sets of points in projective geometry , 1995, IEEE Trans. Inf. Theory.

[45]  Juergen Bierbrauer Introduction to coding theory , 2005, Discrete mathematics and its applications.

[46]  Patric R. J. Östergård,et al.  Linear codes with covering radius 3 , 2010, Des. Codes Cryptogr..

[47]  Petri Rosendahl,et al.  New covering codes from an ADS-like construction , 2003, IEEE Transactions on Information Theory.

[48]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[49]  Heeralal Janwa,et al.  Some Upper Bounds on the Covering Radii of Linear Codes Over Fq and Their Applications , 1999, Des. Codes Cryptogr..

[50]  J. Hirschfeld Surveys in Combinatorics: MAXIMUM SETS IN FINITE PROJECTIVE SPACES , 1983 .

[51]  Tsonka S. Baicheva On the covering radius of ternary negacyclic codes with length up to 26 , 2001, IEEE Trans. Inf. Theory.

[52]  Sachin Lodha,et al.  Covering Codes for Hats-on-a-line , 2006, Electron. J. Comb..

[53]  Tero Laihonen,et al.  Constructions for identifying codes , 2008 .

[54]  Patric R. J. Östergård,et al.  Further results on (k, t)-subnormal covering codes , 1992, IEEE Trans. Inf. Theory.

[55]  Stefano Marcugini,et al.  Computer search in projective planes for the sizes of complete arcs , 2005 .

[56]  N. J. A. Sloane,et al.  On the covering radius of codes , 1985, IEEE Trans. Inf. Theory.

[57]  Veerle Fack,et al.  Binary and Ternary Linear Quasi-Perfect Codes With Small Dimensions , 2007, IEEE Transactions on Information Theory.

[58]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[59]  J. Hirschfeld,et al.  The packing problem in statistics, coding theory and finite projective spaces , 1998 .

[60]  Patric R. J. Östergård,et al.  Linear codes with covering radius R = 2, 3 and codimension tR , 2001, IEEE Trans. Inf. Theory.

[61]  Stefano Marcugini,et al.  On saturating sets in projective spaces , 2003, J. Comb. Theory, Ser. A.

[62]  Patric R. J. Östergård,et al.  Ternary Covering Codes Derived from BCH Codes , 1997, J. Comb. Theory, Ser. A.

[63]  Alexander A. Davydov New Constructions of Covering Codes , 2001, Des. Codes Cryptogr..

[64]  Stefano Marcugini,et al.  Locally optimal (nonshortening) linear covering codes and minimal saturating sets in projective spaces , 2005, IEEE Transactions on Information Theory.

[65]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[66]  Patric R. J. Östergård,et al.  New Quaternary Linear Codes with Covering Radius 2 , 2000 .

[67]  James W. P. Hirschfeld,et al.  Bounds on (n, r)-arcs and their application to linear codes , 2005, Finite Fields Their Appl..

[68]  Stefano Marcugini,et al.  Linear codes with covering radius 2, 3 and saturating sets in projective geometry , 2004, IEEE Transactions on Information Theory.