Impact of Hydrogen on the Bias Temperature Instability

The ability of hydrogen to saturate lattice imperfections, which arise naturally at the silicon–oxide interface due to the structural mismatch of the two materials, has already early motivated to connect H with the bias temperature instability. Consistently, ESR measurements after NBTS observed P b center defects, i.e. previously H passivated interfacial dangling bonds on silicon atoms at the interface, which supports the assumption that H is detached from defect precursors during NBTS. In contrast, theoretical and experimental investigations on the Si–H bond dissociation energy revealed a rather large value, inconsistent with the low-energy nature of conventional NBTI test. We summarize several explanations to this problem and compare these ideas with studies where the amount of H near the interfacial layer is varied through particular process adjustments.

[1]  R. A. Weeks,et al.  Paramagnetic Resonance of Lattice Defects in Irradiated Quartz , 1956 .

[2]  A. Douglas THE SPECTRUM OF SILICON HYDRIDE , 1957 .

[3]  R. H. Silsbee,et al.  Electron Spin Resonance in Neutron‐Irradiated Quartz , 1961 .

[4]  Joseph R. Ligenza,et al.  EFFECT OF CRYSTAL ORIENTATION ON OXIDATION RATES OF SILICON IN HIGH PRESSURE STEAM , 1961 .

[5]  S. Benson,et al.  III - Bond energies , 1965 .

[6]  P. V. Gray,et al.  DENSITY OF SiO2–Si INTERFACE STATES , 1966 .

[7]  A. Kuper,et al.  Water Contamination in Thermal Oxide on Silicon , 1970 .

[8]  N. Harrick,et al.  Hydrides and Hydroxyls in Thin Silicon Dioxide Films , 1971 .

[9]  W. Fowler,et al.  Oxygen vacancy model for the E1′ center in SiO2 , 1974 .

[10]  K. Jeppson,et al.  Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices , 1977 .

[11]  J. Vitko,et al.  ESR studies of hydrogen hyperfine spectra in irradiated vitreous silica , 1978 .

[12]  P. Dressendorfer,et al.  Effect of bias on radiation‐induced paramagnetic defects at the silicon‐silicon dioxide interface , 1982 .

[13]  G. Groeseneken,et al.  A reliable approach to charge-pumping measurements in MOS transistors , 1984, IEEE Transactions on Electron Devices.

[14]  Patrick M. Lenahan,et al.  Hole traps and trivalent silicon centers in metal/oxide/silicon devices , 1984 .

[15]  David L. Griscom,et al.  On the structures of hydrogen-associated defect centers in irradiated high-purity a-SiO2:OH , 1987 .

[16]  T. Sugano,et al.  Electron spin resonance observation of the creation, annihilation, and charge state of the 74‐Gauss doublet in device oxides damaged by soft x rays , 1987 .

[17]  T. Sugano,et al.  Electron spin resonance observation of defects in device oxides damaged by soft x rays , 1987 .

[18]  H. E. Boesch,et al.  Reversibility of trapped hole annealing , 1988 .

[19]  Brower Kl,et al.  Kinetics of H2 passivation of Pb centers at the (111) Si-SiO2 interface. , 1988 .

[20]  G.J. Dunn Effect of an Al overlayer on interface states in poly-Si gate MOS capacitors , 1989, IEEE Electron Device Letters.

[21]  H. E. Boesch,et al.  The nature of the trapped hole annealing process , 1989 .

[22]  K. L. Brower,et al.  Chemical kinetics of hydrogen and (111)Si-SiO2 interface defects , 1990 .

[23]  Brower Dissociation kinetics of hydrogen-passivated (111) Si-SiO2 interface defects. , 1990, Physical review. B, Condensed matter.

[24]  S. Fonash,et al.  Hydrogen anneal of E′ centers in thermal SiO2 on Si , 1990 .

[25]  Kenneth P. Rodbell,et al.  Hydrogen redistribution and gettering in AlCu/Ti thin films , 1991 .

[26]  Edwards,et al.  Interaction of H and H2 with the silicon dangling orbital at the <111> Si/SiO2 interface. , 1991, Physical review. B, Condensed matter.

[27]  E. H. Nicollian,et al.  Mechanism of negative‐bias‐temperature instability , 1991 .

[28]  Estreicher,et al.  Titanium and copper in Si: Barriers for diffusion and interactions with hydrogen. , 1992, Physical Review B (Condensed Matter).

[29]  J. F. Conley,et al.  Room temperature reactions involving silicon dangling bond centers and molecular hydrogen in amorphous SiO/sub 2/ thin films on silicon , 1992 .

[30]  Stesmans Structural relaxation of Pb defects at the (111)Si/SiO2 interface as a function of oxidation temperature: The Pb-generation-stress relationship. , 1993, Physical review. B, Condensed matter.

[31]  Arthur H. Edwards,et al.  Post‐irradiation cracking of H2 and formation of interface states in irradiated metal‐oxide‐semiconductor field‐effect transistors , 1993 .

[32]  J. F. Conley,et al.  Molecular hydrogen, E' center hole traps, and radiation induced interface traps in MOS devices , 1993 .

[33]  A. Lelis,et al.  Time dependence of switching oxide traps , 1994 .

[34]  A. Edwards Dissociation of H2 at silicon dangling orbitals in a-SiO2: a quantum mechanical treatment of nuclear motion☆ , 1995 .

[35]  J. Stathis Erratum: ‘‘Dissociation kinetics of hydrogen‐passivated (100)Si/SiO2 interface defects’’ [J. Appl. Phys. 77, 6205 (1995)] , 1995 .

[36]  J. Stathis Dissociation kinetics of hydrogen‐passivated (100) Si/SiO2 interface defects , 1995 .

[37]  Ogawa,et al.  Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si-SiO2 interface. , 1995, Physical review. B, Condensed matter.

[38]  A. Stesmans Revision of H2 passivation of Pb interface defects in standard (111)Si/SiO2 , 1996 .

[39]  K. Hess,et al.  Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing , 1996 .

[40]  A. Stesmans Passivation of Pb0 and Pb1 interface defects in thermal (100) Si/SiO2 with molecular hydrogen , 1996 .

[41]  W. B. Jackson,et al.  Comment on ‘‘Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing’’ [Appl. Phys. Lett. 68, 2526 (1996)] , 1996 .

[42]  K. Hess,et al.  Deuterium post-metal annealing of MOSFET's for improved hot carrier reliability , 1997, IEEE Electron Device Letters.

[43]  J. Autran,et al.  Interfacial hardness enhancement in deuterium annealed 0.25 μm channel metal oxide semiconductor transistors , 1997 .

[44]  J. W. McPherson,et al.  Field-enhanced Si–Si bond-breakage mechanism for time-dependent dielectric breakdown in thin-film SiO2 dielectrics , 1997 .

[45]  Andre Stesmans,et al.  H-complexed oxygen vacancy in SiO2: Energy level of a negatively charged state , 1997 .

[46]  V. Afanas’ev,et al.  HYDROGEN-INDUCED VALENCE ALTERNATION STATE AT SIO2 INTERFACES , 1998 .

[47]  L. Register,et al.  Impact of nanostructure research on conventional solid-state electronics: The giant isotope effect in hydrogen desorption and CMOS lifetime , 1998 .

[48]  V. Afanas’ev,et al.  P b 1 interface defect in thermal ( 100 ) S i / S i O 2 : 29 Si hyperfine interaction , 1998 .

[49]  Bicai Pan,et al.  Enhanced stability of deuterium in silicon , 1998 .

[50]  J. F. Conley,et al.  What can electron paramagnetic resonance tell us about the Si/SiO2 system? , 1998 .

[51]  J. Stathis,et al.  HYDROGEN ELECTROCHEMISTRY AND STRESS-INDUCED LEAKAGE CURRENT IN SILICA , 1999 .

[52]  V. Afanas’ev,et al.  Trapping of H+ and Li+ ions at the Si/SiO2 interface , 1999 .

[53]  Blair R. Tuttle,et al.  Structure, energetics, and vibrational properties of Si-H bond dissociation in silicon , 1999 .

[54]  A. Stesmans Dissociation kinetics of hydrogen-passivated Pb defects at the (111)Si/SiO2 interface , 2000 .

[55]  James H. Stathis,et al.  Aspects of defects in silica related to dielectric breakdown of gate oxides in MOSFETs , 1999 .

[56]  peixiong zhao,et al.  Reactions of hydrogen with Si-SiO/sub 2/ interfaces , 2000 .

[57]  Guido Groeseneken,et al.  Mechanism for the generation of interface state precursors , 2000 .

[58]  L. Ragnarsson,et al.  Electrical characterization of Pb centers in (100)Si–SiO2 structures: The influence of surface potential on passivation during post metallization anneal , 2000 .

[59]  J. McPherson,et al.  Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics , 2000 .

[60]  Ronald D. Schrimpf,et al.  Hydrogen-related defects in irradiated SiO/sub 2/ , 2000 .

[61]  Andre Stesmans,et al.  Proton nature of radiation-induced positive charge in SiO2 layers on Si , 2001 .

[62]  K. Hess,et al.  Deuterium passivation of interface traps in MOS devices , 2001, IEEE Electron Device Letters.

[63]  K. Hess,et al.  Kinetic study on replacement of hydrogen by deuterium at (100)Si/SiO2 interfaces , 2001 .

[64]  V. Afanas’ev,et al.  Positive charging of thermal SiO2 layers: hole trapping versus proton trapping , 2001 .

[65]  Koichi Ando,et al.  Influence of H2-annealing on the hydrogen distribution near SiO2/Si(100) interfaces revealed by in situ nuclear reaction analysis , 2002 .

[66]  Andre Stesmans,et al.  Influence of interface relaxation on passivation kinetics in H2 of coordination Pb defects at the (111)Si/SiO2 interface revealed by electron spin resonance , 2002 .

[67]  Eiichi Murakami,et al.  Effect of nitrogen at SiO2/Si interface on reliability issues—negative-bias-temperature instability and Fowler–Nordheim-stress degradation , 2002 .

[68]  S. Fujieda,et al.  Hydrogen redistribution induced by negative-bias-temperature stress in metal–oxide–silicon diodes , 2002 .

[69]  W. Y. Teo,et al.  Study of negative-bias temperature-instability-induced defects using first-principle approach , 2003 .

[70]  Koichi Ando,et al.  Interface defects responsible for negative-bias temperature instability in plasma-nitrided SiON/Si(100) systems , 2003 .

[71]  P. Lenahan Atomic scale defects involved in MOS reliability problems , 2003 .

[72]  Takahiro Yamasaki,et al.  Nano-scale simulation for advanced gate dielectrics , 2003 .

[73]  M.A. Alam,et al.  Investigation and modeling of interface and bulk trap generation during negative bias temperature instability of p-MOSFETs , 2004, IEEE Transactions on Electron Devices.

[74]  Terence B. Hook,et al.  Negative bias temperature instability on three oxide thicknesses (1.4/2.2/5.2 nm) with nitridation variations and deuteration , 2005, Microelectron. Reliab..

[75]  Akitaka Yoshigoe,et al.  Characterization of interface defects related to negative-bias temperature instability in ultrathin plasma-nitrided SiON/Si<1 0 0> systems , 2005, Microelectron. Reliab..

[76]  S. Krishnan,et al.  Direct observation of the structure of defect centers involved in the negative bias temperature instability , 2005 .

[77]  Muhammad Ashraful Alam,et al.  A comprehensive model of PMOS NBTI degradation , 2005, Microelectron. Reliab..

[78]  Michael Nelhiebel,et al.  Hydrogen-related influence of the metallization stack on characteristics and reliability of a trench gate oxide , 2005, Microelectron. Reliab..

[79]  peixiong zhao,et al.  Physical mechanisms of negative-bias temperature instability , 2005 .

[80]  A. Krishnan,et al.  Observations of NBTI-induced atomic-scale defects , 2006 .

[81]  M. Denais,et al.  NBTI degradation: From physical mechanisms to modelling , 2006, Microelectron. Reliab..

[82]  Ronald D. Schrimpf,et al.  Hydrogen in MOSFETs - A primary agent of reliability issues , 2007, Microelectron. Reliab..

[83]  Patrick M. Lenahan Deep level defects involved in MOS device instabilities , 2007, Microelectron. Reliab..

[84]  A. Pasquarello,et al.  Alignment of hydrogen-related defect levels at the Si-SiO2 interface , 2007 .

[85]  A. Stesmans,et al.  Insights on the physical mechanism behind negative bias temperature instabilities , 2007 .

[86]  M. Nelhiebel,et al.  Advanced Energetic and Lateral Sensitive Charge Pumping Profiling Methods for MOSFET Device Characterization—Analytical Discussion and Case Studies , 2008, IEEE Transactions on Device and Materials Reliability.

[87]  M. Tomozawa,et al.  Annihilation of E′ center defects in silica glass by hydrogen treatment , 2008 .

[88]  Vincent Huard,et al.  General framework about defect creation at the Si∕SiO2 interface , 2009 .

[89]  M. Nelhiebel,et al.  In Situ Poly Heater—A Reliable Tool for Performing Fast and Defined Temperature Switches on Chip , 2010, IEEE Transactions on Device and Materials Reliability.

[90]  Tibor Grasser,et al.  Observing two stage recovery of gate oxide damage created under negative bias temperature stress , 2010 .

[91]  Stefan Decker,et al.  Energetic distribution of oxide traps created under negative bias temperature stress and their relation to hydrogen , 2010 .

[92]  T. Grasser,et al.  Multiphonon hole trapping from first principles , 2011 .

[93]  Tibor Grasser,et al.  Impact of gate poly doping and oxide thickness on the N- and PBTI in MOSFETs , 2011, Microelectron. Reliab..

[94]  K. Leong,et al.  Are Interface State Generation and Positive Oxide Charge Trapping Under Negative-Bias Temperature Stressing Correlated or Coupled? , 2012, IEEE Transactions on Electron Devices.

[95]  Suppression of Gate Oxide Degradation for MOS Devices Using Deuterium Ion Implantation Method , 2012 .

[96]  K. Leong,et al.  Correlation Between Oxide Trap Generation and Negative-Bias Temperature Instability , 2012, IEEE Electron Device Letters.

[97]  M. Nelhiebel,et al.  Application of On-Chip Device Heating for BTI Investigations , 2014 .