Thoughts on Noise and Quantum Computation

We will try to explore, primarily from the complexity-theoretic point of view, limitations of error-correction and fault-tolerant quantum computation. We consider stochastic models of quantum computation on $n$ qubits subject to noise operators that are obtained as products of tiny noise operators acting on a small number of qubits. We conjecture that for realistic random noise operators of this kind there will be substantial dependencies between the noise on individual qubits and, in addition, the dependence structure of the noise acting on individual qubits will necessarily depend (systematically) on the dependence structure of the qubits themselves. The main hypothesis of this paper is that these properties of noise are sufficient to reduce quantum computation to probabilistic classical computation. Some potentially relevant mathematical issues and problems will be described. Our line of thought appears to be related to that of physicists Alicki, Horodecki, Horodecki and Horodecki [AHHH].

[1]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[2]  Greg Kuperberg,et al.  A concise introduction to quantum probability , quantum mechanics , and quantum computation , 2007 .

[3]  Dheera Venkatraman,et al.  An introduction to quantum error correction , 2006 .

[4]  G. Kalai Noise sensitivity and chaos in social choice theory , 2005 .

[5]  P. Zanardi,et al.  Are the Assumptions of Fault-Tolerant Quantum Error Correction Internally Consistent? , 2005 .

[6]  G. Kalai,et al.  Threshold Phenomena and Influence , 2005 .

[7]  S. Safra,et al.  Threshold Phenomena and Influences , 2005 .

[8]  Scott Aaronson,et al.  Multilinear formulas and skepticism of quantum computing , 2003, STOC '04.

[9]  Ofer Zeitouni,et al.  Lectures on probability theory and statistics , 2004 .

[10]  B. Tsirelson Scaling Limit, Noise, Stability , 2003, math/0301237.

[11]  Leonid A. Levin,et al.  The Tale of One-Way Functions , 2000, Probl. Inf. Transm..

[12]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[13]  M. Horodecki,et al.  Dynamical description of quantum computing: Generic nonlocality of quantum noise , 2001, quant-ph/0105115.

[14]  D. Gottesman An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.

[15]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[16]  I. Benjamini,et al.  Noise sensitivity of Boolean functions and applications to percolation , 1998, math/9811157.

[17]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[18]  Boris Tsirelson,et al.  Examples of Nonlinear Continuous Tensor Products of Measure Spaces and Non-Fock Factorizations , 1998 .

[19]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[20]  J. Preskill Fault-tolerant quantum computation , 1997, quant-ph/9712048.

[21]  J. Bourgain,et al.  Influences of Variables and Threshold Intervals under Group Symmetries , 1997 .

[22]  M. Ben-Or,et al.  Fault-tolerant quantum computation with constant error , 1996, STOC '97.

[23]  M. Ben-Or,et al.  Limitations of Noisy Reversible Computation , 1996, quant-ph/9611028.

[24]  Dorit Aharonov,et al.  Polynomial simulations of decohered quantum computers , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[25]  G. Grimmett,et al.  The random-cluster model on the complete graph , 1996 .

[26]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  G. Kalai,et al.  Every monotone graph property has a sharp threshold , 1996 .

[28]  Yishay Mansour,et al.  An O(nlog log n) learning algorithm for DNF under the uniform distribution , 1992, COLT '92.

[29]  Avi Wigderson,et al.  Dispersers, deterministic amplification, and weak random sources , 1989, 30th Annual Symposium on Foundations of Computer Science.

[30]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.