Extraordinary photoresponse in two-dimensional In(2)Se(3) nanosheets.

We demonstrate extraordinary photoconductive behavior in two-dimensional (2D) crystalline indium selenide (In2Se3) nanosheets. Photocurrent measurements reveal that semiconducting In2Se3 nanosheets have an extremely high response to visible light, exhibiting a photoresponsivity of 3.95 × 10(2) A·W(-1) at 300 nm with an external quantum efficiency greater than 1.63 × 10(5) % at 5 V bias. The key figures-of-merit exceed that of graphene and other 2D material-based photodetectors reported to date. In addition, the photodetector has a fast response time of 1.8 × 10(-2) s and a specific detectivity of 2.26 × 10(12) Jones. The photoconductive response of α-In2Se3 nanosheets extends into ultraviolet, visible, and near-infrared spectral regions. The high photocurrent response is attributed to the direct band gap (EG = 1.3 eV) of In2Se3 combined with a large surface-area-to-volume ratio and a self-terminated/native-oxide-free surface, which help to reduce carrier recombination while keeping fast response, allowing for real-time detection under very low-light conditions.

[1]  Jonathan N. Coleman,et al.  Two‐Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. , 2011 .

[2]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[3]  M. Meyyappan,et al.  Indium selenide nanowire phase-change memory , 2007 .

[4]  L. Roa,et al.  Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy , 2001 .

[5]  J. Jasinski,et al.  Crystal structure of κ-In2Se3 , 2002 .

[6]  J. Guesdon,et al.  Photovoltaic effect in InSe - Application to Solar Energy Conversion , 1979 .

[7]  Yi Cui,et al.  Large anisotropy of electrical properties in layer-structured In2Se3 nanowires. , 2008, Nano letters.

[8]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[9]  J. Moodera,et al.  Growth and characterization of a novel In2Se3 structure , 2001 .

[10]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[11]  Yu‐Guo Guo,et al.  High performance photodetectors of individual InSe single crystalline nanowire. , 2009, Journal of the American Chemical Society.

[12]  Z. Kovalyuk,et al.  Asymmetric current flow in a native oxide/indium selenide heterostructure , 2011 .

[13]  Yi Cui,et al.  The new skinny in two-dimensional nanomaterials. , 2013, ACS nano.

[14]  H. Lutz,et al.  Redetermination of the Crystal Structure of γ-In2Se3by Twin Crystal X-Ray Method , 1996 .

[15]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[16]  Y. Li,et al.  High performance single In2Se3 nanowire photodetector , 2011, 25th International Vacuum Nanoelectronics Conference.

[17]  R. Jayakrishnan,et al.  Enhancement of band gap and photoconductivity in gamma indium selenide due to swift heavy ion irradiation , 2008 .

[18]  D. Tsai,et al.  Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays. , 2011, ACS nano.

[19]  S. T. Lakshmikumar,et al.  Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source , 1994 .

[20]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[21]  Qi Jie Wang,et al.  Broadband high photoresponse from pure monolayer graphene photodetector , 2013, Nature Communications.

[22]  Yi Gu,et al.  Crystalline-crystalline phase transformation in two-dimensional In2Se3 thin layers. , 2013, Nano letters.

[23]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[24]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[25]  Y. Bando,et al.  Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping , 2010 .

[26]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[27]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[28]  H.-P. Baldus,et al.  Zur polymorphie des In2Se3 , 1988 .

[29]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[30]  Muhammad Safdar,et al.  High-performance UV-visible-NIR broad spectral photodetectors based on one-dimensional In₂Te₃ nanostructures. , 2012, Nano letters.

[31]  S. Sakalauskas,et al.  Automated measuring instrument of the surface electric potential and potential distribution , 1998 .

[32]  Kai Xiao,et al.  Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. , 2013, Nano letters.

[33]  R. Lake,et al.  Charge density waves in exfoliated films of van der Waals materials: evolution of Raman spectrum in TiSe2. , 2012, Nano letters.

[34]  P. Ajayan,et al.  Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses , 2012 .

[35]  C. Ho,et al.  Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates. , 2013, ACS applied materials & interfaces.

[36]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[37]  Arthur Zhang,et al.  Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. , 2010, Nano letters.

[38]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[39]  Lifeng Wang,et al.  Synthesis of few-layer GaSe nanosheets for high performance photodetectors. , 2012, ACS nano.

[40]  Tianyou Zhai,et al.  Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. , 2010, ACS nano.

[41]  S. Popović,et al.  Revised and new crystal data for indium selenides , 1979 .

[42]  Jaephil Cho,et al.  MoS₂ nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. , 2011, Nano letters.