Protograph-Based Decoding of LDPC Codes with Hamming Weight Amplifiers

A new protograph-based framework for message passing (MP) decoding of low density parity-check (LDPC) codes with Hamming weight amplifiers (HWAs), which are used e.g. in the NIST post-quantum crypto candidate LEDAcrypt, is proposed. The scheme exploits the correlations in the error patterns introduced by the HWA using a turbo-like decoding approach where messages between the decoders for the outer code given by the HWA and the inner LDPC code are exchanged. Decoding thresholds for the proposed scheme are computed using density evolution (DE) analysis for belief propagation (BP) and ternary message passing (TMP) decoding and compared to existing decoding approaches. The proposed scheme improves upon the basic approach of decoding LDPC code from the amplified error and has a similar performance as decoding the corresponding moderate-density parity-check (MDPC) code but with a significantly lower computational complexity.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Kazukuni Kobara,et al.  Semantically Secure McEliece Public-Key Cryptosystems-Conversions for McEliece PKC , 2001, Public Key Cryptography.

[3]  Marco Baldi,et al.  Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[4]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[5]  Ayoub Otmani,et al.  Cryptanalysis of Two McEliece Cryptosystems Based on Quasi-Cyclic Codes , 2008, Math. Comput. Sci..

[6]  Fabian Steiner,et al.  Protograph-Based LDPC Code Design for Ternary Message Passing Decoding , 2018, ArXiv.

[7]  J. Rosenthal,et al.  Using low density parity check codes in the McEliece cryptosystem , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[8]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[9]  Hui Jin,et al.  A New Fast Density Evolution , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[10]  Luther D. Rudolph,et al.  A class of majority logic decodable codes (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[11]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[12]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[13]  Paulo S. L. M. Barreto,et al.  MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes , 2013, 2013 IEEE International Symposium on Information Theory.

[14]  Marco Baldi,et al.  Optimization of the parity-check matrix density in QC-LDPC code-based McEliece cryptosystems , 2013, 2013 IEEE International Conference on Communications Workshops (ICC).

[15]  Marco Baldi,et al.  A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes , 2008, SCN.

[16]  Marco Chiani,et al.  Unequal Diversity LDPC Codes for Relay Channels , 2013, IEEE Transactions on Wireless Communications.

[17]  Alessandro Barenghi,et al.  LEDAcrypt: Low-dEnsity parity-check coDe-bAsed cryptographic systems , 2019 .

[18]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[19]  Hannes Bartz,et al.  On Decoding Schemes for the MDPC-McEliece Cryptosystem , 2018, ArXiv.

[20]  Marco Chiani,et al.  Protograph LDPC Codes Design Based on EXIT Analysis , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[21]  Troels Pedersen,et al.  Analysis and Design of Binary Message Passing Decoders , 2012, IEEE Transactions on Communications.