Expandable Local and Parallel Two-Grid Finite Element Scheme for the Stokes Equations

In this paper, we present a novel local and parallel two-grid finite element scheme for solving the Stokes equations, and rigorously establish its a priori error estimates. The scheme admits simultaneously small scales of subproblems and distances between subdomains and its expansions, and hence can be expandable. Based on the a priori error estimates, we provide a corresponding iterative scheme with suitable iteration number. The resulting iterative scheme can reach the optimal convergence orders within specific two-grid iterations ($O(|\ln H|^2)$ in 2-D and $O(|\ln H|)$ in 3-D) if the coarse mesh size $H$ and the fine mesh size $h$ are properly chosen. Finally, some numerical tests including 2-D and 3-D cases are carried out to verify our theoretical results.

[1]  Yuhong Zhang,et al.  The partition of unity parallel finite element algorithm , 2015, Adv. Comput. Math..

[2]  Cheng Wang,et al.  Two-grid partition of unity method for second order elliptic problems , 2008 .

[3]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[4]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[5]  Yanren Hou,et al.  An AIM and one-step Newton method for the Navier–Stokes equations☆ , 2001 .

[6]  O. Widlund Domain Decomposition Algorithms , 1993 .

[7]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[8]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .

[9]  Yanren Hou,et al.  Postprocessing Fourier Galerkin Method for the Navier-Stokes Equations , 2009, SIAM J. Numer. Anal..

[10]  M. Marion,et al.  Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .

[11]  Yanren Hou,et al.  An expandable local and parallel two-grid finite element scheme , 2015, Comput. Math. Appl..

[12]  Michael J. Holst,et al.  A New Paradigm for Parallel Adaptive Meshing Algorithms , 2000, SIAM J. Sci. Comput..

[13]  Roland Glowinski,et al.  A boundary multiplier/fictitious domain method for the steady incompressible Navier-Stokes equations , 2001, Numerische Mathematik.

[14]  Jinchao Xu,et al.  Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.

[15]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[18]  Haibiao Zheng,et al.  Local and Parallel Finite Element Algorithm Based on the Partition of Unity for Incompressible Flows , 2014, Journal of Scientific Computing.

[19]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[20]  Lutz Tobiska,et al.  A Two-Level Method with Backtracking for the Navier--Stokes Equations , 1998 .

[21]  Yanren Hou,et al.  A Small Eddy Correction Method for Nonlinear Dissipative Evolutionary Equations , 2003, SIAM J. Numer. Anal..

[22]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[23]  Feng Shi,et al.  Local and Parallel Finite Element Algorithms Based on the Partition of Unity for the Stokes Problem , 2014, SIAM J. Sci. Comput..

[24]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[25]  G. Burton Sobolev Spaces , 2013 .

[26]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[27]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..