Data Driven Discovery in Astrophysics
暂无分享,去创建一个
C. Donalek | M. Brescia | S. Cavuoti | G. Longo | C. Donalek | G. Longo | M. Brescia | S. Cavuoti | S. G. Djorgovski | S. Djorgovski
[1] S. Djorgovski,et al. Automated Star/Galaxy Classification for Digitized Poss-II , 1995 .
[2] Ciro Donalek,et al. Data challenges of time domain astronomy , 2012, Distributed and Parallel Databases.
[3] N. A. Walton,et al. Quasar candidates selection in the Virtual Observatory era , 2008, 0805.0156.
[4] M. Brescia,et al. A catalogue of photometric redshifts for the SDSS-DR9 galaxies , 2014, 1407.2527.
[5] D. Gerdes,et al. PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.
[6] J. Richards,et al. ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.
[7] Mauro Garofalo,et al. DAMEWARE: A Web Cyberinfrastructure for Astrophysical Data Mining , 2014, 1406.3538.
[8] D. Wells,et al. Fits: a flexible image transport system , 1981 .
[9] Ciro Donalek,et al. Classification of Optical Transients: Experiences from PQ and CRTS Surveys , 2010 .
[10] Robert J. Brunner,et al. The Digitized Second Palomar Observatory Sky Survey (DPOSS). III. Star-Galaxy Separation , 2004 .
[11] Matthew J. Graham,et al. The National Virtual Observatory: Tools and Techniques for Astronomical Research , 2007 .
[12] Michigan.,et al. Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.
[13] C. Donalek,et al. Neural networks and photometric redshifts , 2002 .
[14] C. Donalek,et al. New Approaches to Object Classification in Synoptic Sky Surveys , 2008 .
[15] Joshua S. Bloom,et al. Data Mining and Machine-Learning in Time-Domain Discovery & Classification , 2011, 1104.3142.
[16] Ciro Donalek,et al. Connecting the time domain community with the Virtual Astronomical Observatory , 2012, Other Conferences.
[17] Alyssa A. Goodman,et al. Principles of high‐dimensional data visualization in astronomy , 2012, 1205.4747.
[18] Ciro Donalek,et al. Mixing Bayesian Techniques for Effective Real-time Classification of Astronomical Transients , 2010 .
[19] D. Raffaele,et al. Mining the SDSS archive. I. Photometric redshifts in the nearby universe , 2007, astro-ph/0703108.
[20] S. G. Djorgovski,et al. Towards an Automated Classification of Transient Events in Synoptic Sky Surveys , 2011, CIDU.
[21] Massimo Brescia,et al. Photometric redshifts with Quasi Newton Algorithm (MLPQNA). Results in the PHAT1 contest , 2012, 1206.0876.
[22] M. Brescia,et al. PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS , 2013, 1305.5641.
[23] C. Donalek,et al. CLaSPS: A NEW METHODOLOGY FOR KNOWLEDGE EXTRACTION FROM COMPLEX ASTRONOMICAL DATA SETS , 2012, 1206.2919.
[24] Jeffrey S. Norris,et al. Immersive and collaborative data visualization using virtual reality platforms , 2014, 2014 IEEE International Conference on Big Data (Big Data).
[25] Alexander G. Gray,et al. EIGHT-DIMENSIONAL MID-INFRARED/OPTICAL BAYESIAN QUASAR SELECTION , 2008, 0810.3567.
[26] A. A. Mahabal,et al. The Digitized Second Palomar Observatory Sky Survey (DPOSS). II. Photometric Calibration , 2002, astro-ph/0210298.
[27] Raffaele D'Abrusco,et al. Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation , 2011, 1107.3160.
[28] M. Brescia,et al. The detection of globular clusters in galaxies as a data mining problem , 2011, 1110.2144.
[29] Alexander S. Szalay,et al. Virtual Observatories of the Future , 2001 .
[30] Massimo Brescia,et al. Photometric classification of emission line galaxies with machine-learning methods , 2013, 1310.2840.
[31] S. G. Djorgovski,et al. Discovery, classification, and scientific exploration of transient events from the Catalina Real-time Transient Survey , 2011, 1111.0313.
[32] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[33] Robert J. Hanisch. The Virtual Observatory in Transition , 2006 .