Phase-space Berry phases in chiral magnets: Dzyaloshinskii-Moriya interaction and the charge of skyrmions

The semiclassical motion of electrons in phase space $\mathbf{x}=(\mathbf{R},\mathbf{k})$ is influenced by Berry phases described by a six-component vector potential $\mathbf{A}=({\mathbf{A}}^{\mathrm{R}},{\mathbf{A}}^{\mathrm{k}})$. In chiral magnets, Dzyaloshinskii-Moriya (DM) interactions induce slowly varying magnetic textures (helices and skyrmion lattices) for which all components of $\mathbf{A}$ are important, inducing effectively a curvature in mixed position and momentum space. We show that for smooth textures and weak spin-orbit coupling, phase-space Berry curvatures determine the DM interactions and give important contributions to the charge. Using ab initio methods, we calculate the strength of DM interactions in MnSi in good agreement with experiment and estimate the charge of skyrmions.

[1]  Josef Kudrnovsky,et al.  Ab initiotheory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys , 2012 .

[2]  S. Heinze,et al.  Maximally localized Wannier functions within the FLAPW formalism , 2008, 0806.3213.

[3]  H. Smith,et al.  Quantum field-theoretical methods in transport theory of metals , 1986 .

[4]  S. Sondhi,et al.  Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. , 1993, Physical review. B, Condensed matter.

[5]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[6]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[7]  H. Ebert,et al.  Coherent description of the intrinsic and extrinsic anomalous Hall effect in disordered alloys on an ab initio level. , 2010, Physical review letters.

[8]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[9]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[10]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[11]  Proceedings of the Royal Society (London) , 1906, Science.

[12]  C. Pfleiderer,et al.  Emergent electrodynamics of skyrmions in a chiral magnet , 2012, Nature Physics.

[13]  Y. Tokura,et al.  Large topological Hall effect in a short-period helimagnet MnGe. , 2011, Physical review letters.

[14]  Brey,et al.  Skyrme crystal in a two-dimensional electron gas. , 1995, Physical review letters.

[15]  D. Vanderbilt,et al.  Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation , 2006, cond-mat/0608257.

[16]  G. Shirane,et al.  Magnetic excitations in the weak itinerant ferromagnet MnSi , 1977 .

[17]  Berry phase correction to electron density of states in solids. , 2005, cond-mat/0502340.

[18]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[19]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[20]  West,et al.  Optically pumped NMR evidence for finite-size skyrmions in GaAs quantum wells near Landau level filling nu =1. , 1995, Physical review letters.

[21]  Tanmoy Das,et al.  Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.

[22]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[23]  Qian Niu,et al.  Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects , 1999 .

[24]  Bohm-Jung Yang,et al.  Skyrmion quantum numbers and quantized pumping in two dimensional topological chiral magnets , 2011, 1110.0946.

[25]  P. Böni,et al.  Topological Hall effect in the A phase of MnSi. , 2009, Physical review letters.

[26]  F. Freimuth,et al.  Ab initio theory of the scattering-independent anomalous Hall effect. , 2011, Physical review letters.

[27]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[28]  Urs O. Häfeli,et al.  Journal of Magnetism and Magnetic Materials: Preface , 2005 .

[29]  Enge Wang,et al.  First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe. , 2003, Physical review letters.

[30]  C. Chien,et al.  Extended Skyrmion phase in epitaxial FeGe(111) thin films. , 2012, Physical review letters.

[31]  P. Morrison,et al.  Hamiltonian description of the ideal fluid , 1998 .

[32]  C. Pfleiderer,et al.  Rotating skyrmion lattices by spin torques and field or temperature gradients , 2012, 1204.5051.

[33]  R. Cheng,et al.  Electron Dynamics in Slowly Varying Antiferromagnetic Texture , 2012, 1201.3523.

[34]  Brey,et al.  Charged spin-texture excitations and the Hartree-Fock approximation in the quantum Hall effect. , 1994, Physical review. B, Condensed matter.

[35]  W. Pickett,et al.  Implications of the B20 crystal structure for the magnetoelectronic structure of MnSi , 2004, cond-mat/0403442.

[36]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[37]  Lee,et al.  Boson-vortex-Skyrmion duality, spin-singlet fractional quantum Hall effect, and spin-1/2 anyon superconductivity. , 1990, Physical review letters.

[38]  D. Vanderbilt,et al.  Spectral and Fermi surface properties from Wannier interpolation , 2007, cond-mat/0702554.

[39]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.