Recycling Krylov Subspaces for Sequences of Linear Systems
暂无分享,去创建一个
Eric de Sturler | Michael L. Parks | Greg Mackey | Duane D. Johnson | Spandan Maiti | Greg E. Mackey | E. Sturler | S. Maiti | M. Parks | Duane D. Johnson | E. D. Sturler
[1] Paul Fischer,et al. PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .
[2] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[3] A. V. Smirnov,et al. Accuracy and limitations of localized Green’s function methods for materials science applications , 2001 .
[4] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[5] Ronald B. Morgan,et al. GMRES WITH DEFLATED , 2008 .
[6] Oliver G. Ernst,et al. Analysis of acceleration strategies for restarted minimal residual methods , 2000 .
[7] G. W. Stewart,et al. Matrix algorithms , 1998 .
[8] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[9] Charbel Farhat,et al. Implicit parallel processing in structural mechanics , 1994 .
[10] Valeria Simoncini,et al. On the Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2003 .
[11] K. Burrage,et al. Restarted GMRES preconditioned by deflation , 1996 .
[12] Gene H. Golub,et al. Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..
[13] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[14] Misha Elena Kilmer,et al. Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..
[15] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[16] Jack Dongarra,et al. Numerical Linear Algebra for High-Performance Computers , 1998 .
[17] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.
[18] Michael Creutz,et al. Quarks, Gluons and Lattices , 1984 .
[19] J. Korringa,et al. On the calculation of the energy of a Bloch wave in a metal , 1947 .
[20] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[21] Kesheng Wu,et al. Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..
[22] E. Sturler,et al. Nested Krylov methods based on GCR , 1996 .
[23] Michael K. Ng,et al. Galerkin Projection Methods for Solving Multiple Linear Systems , 1999, SIAM J. Sci. Comput..
[24] Johnson,et al. Total-energy and pressure calculations for random substitutional alloys. , 1990, Physical review. B, Condensed matter.
[25] Christian Rey,et al. A Rayleigh–Ritz preconditioner for the iterative solution to large scale nonlinear problems , 1998, Numerical Algorithms.
[26] Richard F. Barrett,et al. Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.
[27] Ronald B. Morgan,et al. Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..
[28] W. Kohn,et al. Solution of the Schrödinger Equation in Periodic Lattices with an Application to Metallic Lithium , 1954 .
[29] Arne S. Gullerud,et al. MPI-based implementation of a PCG solver using an EBE architecture and preconditioner for implicit, 3-D finite element analysis , 2001 .
[30] Weinberger,et al. Theory and convergence properties of the screened Korringa-Kohn-Rostoker method. , 1995, Physical review. B, Condensed matter.
[31] Valeria Simoncini,et al. On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..
[32] Gene H. Golub,et al. Matrix computations , 1983 .
[33] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[34] Frédéric Guyomarc'h,et al. A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..
[35] Kyle A. Gallivan,et al. A new family of block methods , 1999 .
[36] Eric de Sturler,et al. Analysis of Krylov subspace recycling for sequences of linear systems. , 2005 .
[37] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[38] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[39] Eric de Sturler,et al. The iterative solution of a sequence of linear systems arising from nonlinear finite element analysis , 2005 .
[40] John Rossi,et al. Convergence of Restarted Krylov Subspaces to Invariant Subspaces , 2004, SIAM J. Matrix Anal. Appl..
[41] B. Vital. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .
[42] Efstratios Gallopoulos,et al. An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..
[43] Y. Saad. Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..
[44] Christian Rey,et al. Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems , 2004, Numerical Algorithms.
[45] Kesheng Wu,et al. Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..