High-Barrier Biobased Copolyesters with Targeted Glass Transition Temperatures as Renewable Alternatives for PET

[1]  H. Vieyra,et al.  Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review , 2022, Polymers.

[2]  M. Hedenqvist,et al.  Weathering of Furan and 2,2’-Bifuran Polyester and Copolyester Films , 2022, Polymer Degradation and Stability.

[3]  J. Sirviö,et al.  Renewable Furfural-Based Polyesters Bearing Sulfur-Bridged Difuran Moieties with High Oxygen Barrier Properties , 2022, Biomacromolecules.

[4]  H. R. Visser,et al.  The Road to Bring FDCA and PEF to the Market , 2022, Polymers.

[5]  G. Gruter,et al.  Evaluating the commercial application potential of polyesters with 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide) by reviewing the synthetic challenges in step growth polymerization , 2021, European Polymer Journal.

[6]  Juha Heiskanen,et al.  Furfural-Based Modification of PET for UV-Blocking Copolymers with Decreased Oxygen Permeability , 2021, Industrial & Engineering Chemistry Research.

[7]  Zhuqi Chen,et al.  Feasible Synthesis of a Bifuran-Based Monomer for Polymer Synthesis from a Hemicellulose-Derived Platform , 2020 .

[8]  N. Guigo,et al.  A Perspective on PEF Synthesis, Properties, and End-Life , 2020, Frontiers in Chemistry.

[9]  Zoi Terzopoulou,et al.  Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review , 2020, Polymers.

[10]  D. Schiraldi,et al.  High barrier biosourced polyester from dimethyl [2,2′-bifuran]-5,5′-dicarboxylate , 2020 .

[11]  T. Reineke,et al.  Next-generation polymers: Isosorbide as a renewable alternative , 2020 .

[12]  Wei Huang,et al.  An evoluted bio‐based 2,5‐furandicarboxylate copolyester fiber from poly(ethylene terephthalate) , 2020 .

[13]  J. Sirviö,et al.  Utilizing Furfural-based Bifuran Diester as Monomer and Comonomer for High-Performance Bioplastics: Properties of Poly(butylene furanoate), Poly(butylene bifuranoate), and their Copolyesters. , 2019, Biomacromolecules.

[14]  Jinggang Wang,et al.  2,5-Furandicarboxylic acid as a sustainable alternative to isophthalic acid for synthesis of amorphous poly(ethylene terephthalate) copolyester with enhanced performance , 2018, Journal of Applied Polymer Science.

[15]  P. Vaz,et al.  Inside PEF: Chain Conformation and Dynamics in Crystalline and Amorphous Domains , 2018 .

[16]  L. Delbreilh,et al.  Molecular Mobility in Amorphous Biobased Poly(ethylene 2,5-furandicarboxylate) and Poly(ethylene 2,4-furandicarboxylate) , 2018 .

[17]  J. Sirviö,et al.  UV-Blocking Synthetic Biopolymer from Biomass-Based Bifuran Diester and Ethylene Glycol , 2018, Macromolecules.

[18]  Edit Cséfalvay,et al.  Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. , 2017, Chemical reviews.

[19]  T. Nishino,et al.  Preparation of Furan Dimer-based Biopolyester Showing High Melting Points , 2017 .

[20]  M. Dumont,et al.  Advances in polymer precursors and bio‐based polymers synthesized from 5‐hydroxymethylfurfural , 2017 .

[21]  D. Bikiaris,et al.  Poly(ethylene furanoate-co-ethylene terephthalate) biobased copolymers: Synthesis, thermal properties and cocrystallization behavior , 2017 .

[22]  Charles Romain,et al.  Sustainable polymers from renewable resources , 2016, Nature.

[23]  Jinggang Wang,et al.  Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties , 2016 .

[24]  William J. Koros,et al.  Carbon Dioxide Sorption and Transport in Amorphous Poly(ethylene furanoate) , 2015 .

[25]  J. R. Johnson,et al.  Oxygen sorption and transport in amorphous poly(ethylene furanoate) , 2014 .

[26]  William J. Koros,et al.  Chain Mobility, Thermal, and Mechanical Properties of Poly(ethylene furanoate) Compared to Poly(ethylene terephthalate) , 2014 .

[27]  Sujata K. Bhatia,et al.  Biobased plastics and bionanocomposites: Current status and future opportunities , 2013 .

[28]  Stephen A. Miller Sustainable Polymers: Opportunities for the Next Decade. , 2013, ACS macro letters.

[29]  R. Mülhaupt Green Polymer Chemistry and Bio‐based Plastics: Dreams and Reality , 2013 .

[30]  J. Coelho,et al.  New copolyesters derived from terephthalic and 2,5-furandicarboxylic acids: A step forward in the development of biobased polyesters , 2013 .

[31]  A. Gandini The irruption of polymers from renewable resources on the scene of macromolecular science and technology , 2011 .

[32]  J. Pascault,et al.  Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review , 2010 .

[33]  Anthony L Andrady,et al.  Applications and societal benefits of plastics , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  Guy Fleche,et al.  Isosorbide. Preparation, Properties and Chemistry , 1986 .