Diversified redundancy in the measurement of Euler angles using accelerometers and magnetometers

Euler angle determination plays an important role in control of aerial vehicles. Euler angles can be determined based on the measurements of the projections of earth magnetic field and gravity on the three body axes of the vehicle. The proposed approach utilizes seven methods to compute the Euler angles and each of these methods employs a different subset of the six measurements. The capability of computing the Euler angles in multiple ways provides a diversified redundancy required for fault tolerance. This diversified redundancy can be also used to separate the desired measurement from extraneous interferences and to identify sensor failures.

[1]  N. P. Piercy Sensor failure estimators for detection filters , 1992 .

[2]  R. Pio Euler angle transformations , 1966 .

[3]  Jinhui Lan,et al.  Constrained Filtering Method for MAV Attitude Determination , 2005, 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings.

[4]  Koichi Suyama Fault detection of redundant sensors used in reliable sampled-data control systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[5]  J. Junkins,et al.  Analytical Mechanics of Space Systems , 2003 .

[6]  R.C. Hayward,et al.  Design of multi-sensor attitude determination systems , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Andrew A. Thompson A Point-wise Solution for the Magnetic Field Vector , 2002 .

[8]  Chunlong Hu,et al.  Design and DSP microprocessor implementation of digital sinusoidal tracking controllers , 2005, Proceedings of the 2005, American Control Conference, 2005..

[9]  M. Ilg,et al.  A microcontroller solution for AMR magnetic sensing in flying munitions systems , 2005, IEEE International Conference on Mechatronics, 2005. ICM '05..

[10]  M. S. Grewal,et al.  Application of Kalman filtering to gyroless attitude determination and control system for environmental satellites , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[11]  Daniele Mortari,et al.  Optimal cones intersection technique , 2006 .

[12]  M.M. Trivedi,et al.  Transformation relationships for two commonly utilized Euler angle representations , 1992, IEEE Trans. Syst. Man Cybern..

[13]  David J. Hepner,et al.  MAGSONDE: A Device for Making Angular Measurements on Spinning Projectiles With Magnetic Sensors , 2000 .

[14]  N. Marchand,et al.  A low-cost air data attitude heading reference system for the tourism airplane applications , 2005, IEEE Sensors, 2005..

[15]  D. Gebre-Egziabher,et al.  A gyro-free quaternion-based attitude determination system suitable for implementation using low cost sensors , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[16]  Ron J. Patton,et al.  Fault-Tolerant Control: The 1997 Situation , 1997 .

[17]  Andreas Koch,et al.  Multi Sensor Data Fusion for Sensor Failure Detection and Health Monitoring , 2005 .

[18]  S. Mobasser,et al.  Galileo spacecraft autonomous attitude determination using a V-slit star scanner , 1991, 1991 IEEE Aerospace Applications Conference Digest.