Mixed problems for separate variable coefficient diffusion equations: The non-dirichlet case approximate solutions with a priori error bounds

This paper deals with the construction of accurate analytic-numerical solutions of non-Dirichlet mixed variable coefficient diffusion problems of the type u"t = (b(t)/a(x))u"x"x, 0 0, a"1u(0, t) + a"2u"x(0, t) = 0, b"1u(L, t) + b"2u"x(L, t) = 0, u(x, 0) = f(x), 0 @? x @? L. Uniqueness and existence of an exact series solution are treated. Given @e > 0, t"0 > 0 andD(t"0, t"1) = {(x, t); 0 @?x @? L, t"0 @? t @? t"1} an approximate analytic-numerical solution involving only a finite number of eigenvalues is given. For this finite number of eigenvalues @l"1,..., @l"n"2, the admissible accuracy @l@l"i - \@?gl"i@l @? @d is determined so that the approximation error of the numerical solution u@?(x, t) with respect to the exact series solution is less than @e uniformly in D(t"0, t"1).

[1]  Pedro Almenar,et al.  Constructive approximations of mixed variable coefficient diffusion problems , 1999 .

[2]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[3]  J. Canosa,et al.  A New Method for the Solution of the Schrdinger Equation , 1970 .

[4]  John D. Pryce,et al.  Automatic solution of Sturm-Liouville problems using the Pruess method , 1992 .

[5]  A. C. Metaxas,et al.  Industrial Microwave Heating , 1988 .

[6]  T. Teichmann,et al.  Boundary and Eigenvalue Problems in Mathematical Physics , 1989 .

[7]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[8]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[9]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[10]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[11]  Alan L. Andrew,et al.  Correction of Numerov's eigenvalue estimates , 1985 .

[12]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[13]  Gene H. Golub,et al.  Matrix computations , 1983 .

[14]  Alan L. Andrew,et al.  Correction of finite element estimates for Sturm-Liouville eigenvalues , 1986 .

[15]  M. N. Özişik Boundary value problems of heat conduction , 1989 .

[16]  Steven Pruess,et al.  Estimating the Eigenvalues of Sturm–Liouville Problems by Approximating the Differential Equation , 1973 .

[17]  E. Hille,et al.  Lectures on ordinary differential equations , 1968 .

[18]  T. Apostol Mathematical Analysis , 1957 .

[19]  Pedro Almenar,et al.  Accurate continuous numerical solutions of time dependent mixed partial differential problems , 1996 .

[20]  J. W. Brown,et al.  Fourier series and boundary value problems , 1941 .