General order multivariate Padé approximants for pseudo-multivariate functions
暂无分享,去创建一个
[1] Annie Cuyt,et al. How well can the concept of Padé approximant be generalized to the multivariate case , 1999 .
[2] Bernhard Beckermann,et al. SOME EXPLICIT FORMULAS FOR PADS APPROXIMANTS OF RATIOS OF HYPERGEOMETRIC FUNCTIONS , 2008 .
[3] B. Dwork. Generalized Hypergeometric Functions , 1990 .
[4] Kathy Driver,et al. Kronecker type theorems, normality and continuity of the multivariate Padé operator , 1996 .
[5] Edward B. Saff,et al. Convergence of Padé approximants of partial theta functions and the Rogers-Szegö polynomials , 1987 .
[6] Annie A. M. Cuyt,et al. Exploring multivariate Padé approximants for multiple hypergeometric series , 1999, Adv. Comput. Math..
[7] Henri Padé. Recherches sur la convergence des développements en fractions continues d'une certaine catégorie de fonctions , 1907 .
[8] Ping Zhou. Explicit construction of multivariate Pade´ approximants , 1997 .
[9] D. Levin,et al. General Order Padè-type Rational Approximants Defined from Double Power Series , 1976 .
[10] Peter Borwein,et al. Pad6 Approximants for the q-Elementary Functions , 1988 .
[11] Ping Zhou. Multivariate Padé Approximants Associated with Functional Relations , 1998 .
[12] Kathy Driver,et al. A direct approach to convergence of multivariate, nonhomogeneous, Pade´ approximants , 1996 .
[13] Peter B. Borvein. Padé approximants for theq-elementary functions , 1988 .
[14] Hassane Allouche,et al. On the structure of a table of multivariate rational interpolants , 1992 .
[15] Ping Zhou. Explicit Construction of Multivariate Padé Approximants for a q-Logarithm Function , 2000 .
[16] Annie A. M. Cuyt,et al. Explicit construction of general multivariate Padé approximants to an Appell function , 2005, Adv. Comput. Math..