InGaN Solar Cells: Present State of the Art and Important Challenges

Solar cells are a promising renewable and carbon-free electric energy resource to address the fossil-fuel shortage and global warming. Energy conversion efficiencies over 40% have been recently achieved using conventional III–V semiconductor compounds as photovoltaic materials. The revision of InN bandgap to a much narrower value has extended the fundamental bandgap of the group III-nitride alloy system over a wider spectral region (from 0.64 eV for InN to 3.4 eV for GaN or 6.2 eV for AlN), raising the possibility of a variety of new applications. The tunable bandgap, predicted high radiation resistance, and strong absorption coefficient of the In <formula formulatype="inline"><tex Notation="TeX">$_x$</tex></formula>Ga <formula formulatype="inline"><tex Notation="TeX">$_{ 1-x}$</tex></formula>N material system are promising for high-efficiency photovoltaic systems. During the past few years, the interest in In <formula formulatype="inline"><tex Notation="TeX">$_x$</tex></formula>Ga<formula formulatype="inline"><tex Notation="TeX">$_{ 1-x}$</tex> </formula>N solar cells has been remarkable. The development of high-performance solar cells using In <formula formulatype="inline"><tex Notation="TeX">$_x$</tex></formula>Ga <formula formulatype="inline"><tex Notation="TeX">$_{1-x}$</tex></formula>N materials is one of the most important goals when compared with the existing solar cells using Si and other III–V materials. Significant efforts and progress have been made toward this goal, while great opportunities and grand challenges coexist. In this paper, we present a review on the present state of the art of In<formula formulatype="inline"><tex Notation="TeX">$_x$</tex> </formula>Ga<formula formulatype="inline"><tex Notation="TeX">$_{1-x}$</tex></formula>N-based solar cells. The most important challenges toward the high-efficiency In<formula formulatype="inline"><tex Notation="TeX"> $_x$</tex></formula>Ga<formula formulatype="inline"><tex Notation="TeX">$_{ 1-x}$</tex></formula>N-based solar cells are discussed in the context of the recent results.

[1]  Ray-Hua Horng,et al.  High-quality InGaN∕GaN heterojunctions and their photovoltaic effects , 2008 .

[2]  Jonathan J. Wierer,et al.  The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices , 2010 .

[3]  Ray-Hua Horng,et al.  Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells , 2009, IEEE Electron Device Letters.

[4]  Baoping Zhang,et al.  Fabrication and characterization of InGaN p-i-n homojunction solar cell , 2009 .

[5]  Ilesanmi Adesida,et al.  Characterization of Pd/Ni/Au ohmic contacts on p-GaN , 2005 .

[6]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[7]  S. M. Durbin,et al.  Buried p-type layers in Mg-doped InN , 2006 .

[8]  W. Walukiewicz,et al.  Characterization of MG-doped InGaN and InALN alloys grown by MBE for solar applications , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[9]  Seong Jun Park,et al.  Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment , 1999 .

[10]  H. Amano,et al.  p‐type conduction in Mg‐doped Ga0.91In0.09N grown by metalorganic vapor‐phase epitaxy , 1995 .

[11]  S. Kurtz,et al.  Design, Growth, Fabrication and Characterization of High-Band Gap InGaN/GaN Solar Cells , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[12]  Motoaki Iwaya,et al.  Realization of Nitride-Based Solar Cell on Freestanding GaN Substrate , 2010 .

[13]  A. Yoshikawa,et al.  Growth of InN quantum dots on N-polarity GaN by molecular-beam epitaxy , 2005 .

[14]  Yoichi Kawakami,et al.  Nanoscopic recombination processes in InGaN/GaN quantum wells emitting violet, blue, and green spectra , 2008 .

[15]  Martin A. Green,et al.  Prospects for photovoltaic efficiency enhancement using low-dimensional structures , 2000 .

[16]  D. Starikov,et al.  Fabrication and characterization of 2.3eV InGaN photovoltaic devices , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[17]  W. Walukiewicz,et al.  Modeling of InGaN/Si tandem solar cells , 2008 .

[18]  Motoaki Iwaya,et al.  GaInN‐based solar cells using GaInN/GaInN superlattices , 2011 .

[19]  Jinn-Kong Sheu,et al.  Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers , 2010 .

[20]  Baoping Zhang,et al.  Favourable photovoltaic effects in InGaN pin homojunction solar cell , 2009 .

[21]  A. Zettl,et al.  Growth and morphology of 0.80 eV photoemitting indium nitride nanowires , 2004 .

[22]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .

[23]  Tai-Yuan Lin,et al.  Direct evidence of nanocluster-induced luminescence in InGaN epifilms , 2005 .

[24]  W. Schaff,et al.  Electrical properties of InGaN‐Si heterojunctions , 2009 .

[25]  Fong Kwong Yam,et al.  InGaN: An overview of the growth kinetics, physical properties and emission mechanisms , 2008 .

[26]  Chih-Chung Yang,et al.  Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells , 2000 .

[27]  Z. Q. Li,et al.  Effects of polarization charge on the photovoltaic properties of InGaN solar cells , 2011 .

[28]  Takeshi Kuboyama,et al.  Properties of Ga1-xInxN Films Prepared by MOVPE , 1989 .

[29]  Jr-Hau He,et al.  Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells , 2010 .

[30]  Ian Ferguson,et al.  Optimization of GaN window layer for InGaN solar cells using polarization effect , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[31]  Lester F. Eastman,et al.  Growth, fabrication, and characterization of InGaN solar cells , 2008 .

[32]  Antonio Luque,et al.  Entropy production in photovoltaic conversion , 1997 .

[33]  K. Kumakura,et al.  High Room-Temperature Hole Concentrations above 10 19 cm −3 in Mg-Doped InGaN/GaN Superlattices , 2000 .

[34]  Ian T. Ferguson,et al.  EFFECT OF PHASE SEPARATION ON PERFORMANCE OF III-V NITRIDE SOLAR CELLS , 2007 .

[35]  James S. Speck,et al.  High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy , 2011 .

[36]  Xiaodong Wang,et al.  Systematic study on p-type doping control of InN with different Mg concentrations in both In and N polarities , 2007 .

[37]  Eugene E. Haller,et al.  Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system , 2003 .

[38]  L. J. Chen,et al.  Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films , 1999 .

[39]  Takashi Matsuoka,et al.  Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy , 1991 .

[40]  The Basic Physics and Design of III-V Multijunction Solar Cells , 2002 .

[41]  High efficiency InAlN-based solar cells , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[42]  K. H. Chen,et al.  Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates , 2002 .

[43]  Wladek Walukiewicz,et al.  Finite element simulations of compositionally graded InGaN solar cells , 2010 .

[44]  Hyun-Jin Kim,et al.  Growth of In-rich InGaN/GaN quantum dots by metalorganic chemical vapor deposition , 2004 .

[45]  M. Willander,et al.  III–nitrides: Growth, characterization, and properties , 2000 .

[46]  Hadis Morkoç,et al.  Nonalloyed ohmic contacts on GaN using InN/GaN short‐period superlattices , 1994 .

[47]  Cheul‐Ro Lee,et al.  Growth of hexagonal and cubic InN nanowires using MOCVD with different growth temperatures , 2010 .

[48]  M. Mehta Modifying PC1D to model spontaneous & piezoelectric polarization in III-V nitride solar cells , 2008 .

[49]  Hai Lu,et al.  Electrical properties of InGaN grown by molecular beam epitaxy , 2008 .

[50]  Md. Rafiqul Islam,et al.  Recent advances in InN‐based solar cells: status and challenges in InGaN and InAlN solar cells , 2010 .

[51]  Robert W. Martin,et al.  Origin of Luminescence from InGaN Diodes , 1999 .

[52]  A. Yamamoto,et al.  MOVPE growth of InAlN/InGaN heterostructures with an intermediate range of In content , 2011 .

[53]  Oliver Ambacher,et al.  Growth and applications of Group III-nitrides , 1998 .

[54]  Wladek Walukiewicz,et al.  Demonstration of a III–Nitride/Silicon Tandem Solar Cell , 2009 .

[55]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[56]  Keith W. J. Barnham,et al.  A new approach to high‐efficiency multi‐band‐gap solar cells , 1990 .

[57]  Suski,et al.  Towards the identification of the dominant donor in GaN. , 1995, Physical review letters.

[58]  E. Haller,et al.  Evidence for p-type doping of InN. , 2005, Physical review letters.

[59]  Xiaodong Wang,et al.  Growth and properties of Mg-doped In-polar InN films , 2007 .

[60]  K. Kumakura,et al.  Activation Energy and Electrical Activity of Mg in Mg-Doped InxGa1-xN (x<0.2) , 2000 .

[61]  Jinn-Kong Sheu,et al.  Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers , 2009, IEEE Electron Device Letters.

[62]  Jing Li,et al.  InGaN/GaN multiple quantum well concentrator solar cells , 2010 .

[63]  K. Kumakura,et al.  Efficient Hole Generation above 1019 cm-3 in Mg-Doped InGaN/GaN Superlattices at Room Temperature , 2000 .

[64]  James S. Speck,et al.  High internal and external quantum efficiency InGaN/GaN solar cells , 2011 .

[65]  Seong-Ran Jeon,et al.  InGaN-Based p–i–n Solar Cells with Graphene Electrodes , 2011 .

[66]  V. V. Emtsev,et al.  Acceptor states in the photoluminescence spectra of n-InN , 2005 .

[67]  Macho Anani,et al.  High-grade efficiency III-nitrides semiconductor solar cell , 2009, Microelectron. J..

[68]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[69]  M. Islam,et al.  Mg-doping and n+-p junction formation in MOVPE-grown InxGa1-xN (x∼0.4) , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[70]  V. R. Reddy,et al.  Electrical and structural properties of low-resistance Pt/Ag/Au ohmic contacts to p-type GaN , 2005 .

[71]  T. Johansson,et al.  World Energy Assessment Overview: 2004 Update , 2004 .

[72]  Rajendra Dahal,et al.  InGaN/GaN multiple quantum well solar cells with long operating wavelengths , 2009 .

[73]  Liann-Be Chang,et al.  Temperature dependences of InxGa1−xN multiple quantum well solar cells , 2009 .

[74]  Yang Cui-bai,et al.  Computational Investigation of InxGa1-xN/InN Quantum-Dot Intermediate-Band Solar Cell , 2011 .

[75]  Jinmin Li,et al.  Theoretical design and performance of InxGa1−xN two-junction solar cells , 2008 .

[76]  Jinmin Li,et al.  Simulation of In0.65Ga0.35 N single-junction solar cell , 2007 .

[77]  W. Schaff,et al.  Mg‐doped InN and InGaN – Photoluminescence, capacitance–voltage and thermopower measurements , 2008 .

[78]  A. Nozik Quantum dot solar cells , 2002 .

[79]  Taeil Kim,et al.  Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment , 1998 .

[80]  W. Alan Doolittle,et al.  Effect of III‐nitride polarization on VOC in p–i–n and MQW solar cells , 2011 .

[81]  Colin J. Humphreys,et al.  Misfit dislocations in In‐rich InGaN/GaN quantum well structures , 2006 .

[82]  Wladek Walukiewicz,et al.  Photovoltaic action from InxGa1‐xN p‐n junctions with x > 0.2 grown on silicon , 2011 .

[83]  Jinmin Li,et al.  Photovoltaic effects in InGaN structures with p–n junctions , 2007 .

[84]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[85]  Effects of strained InGaN interlayer on contact resistance between p-GaN and indium tin oxide , 2007 .

[86]  Z. Mi,et al.  InN p-i-n Nanowire Solar Cells on Si , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[87]  Fernando Ponce,et al.  Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence , 2001 .

[88]  Motoaki Iwaya,et al.  GaInN-Based Solar Cells Using Strained-Layer GaInN/GaInN Superlattice Active Layer on a Freestanding GaN Substrate , 2011 .

[89]  Hongxing Jiang,et al.  Mg acceptor level in InN epilayers probed by photoluminescence , 2007 .

[90]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[91]  Wladek Walukiewicz,et al.  Optical properties and electronic structure of InN and In-rich group III-nitride alloys , 2004 .

[92]  David Holec,et al.  Equilibrium critical thickness for misfit dislocations in III-nitrides , 2008 .

[93]  Min-Hung Lee,et al.  Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate , 2011 .

[94]  W. Schaff,et al.  Effects of surface states on electrical characteristics of InN andIn1−xGaxN , 2007 .

[95]  S. Ruffenach,et al.  Indium nitride quantum dots grown by metalorganic vapor phase epitaxy , 2003 .

[96]  X. Hou,et al.  An investigation on InxGa1−xN/GaN multiple quantum well solar cells , 2011 .

[97]  R. Kudrawiec,et al.  Growth and characterization of ingan for photovoltaic devices , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[98]  Martin A. Green,et al.  Solar cell efficiency tables (Version 38) , 2011 .

[99]  P. H. Jefferson,et al.  Variation of band bending at the surface of Mg-doped InGaN: Evidence of p -type conductivity across the composition range , 2007 .

[100]  A. P. Zhang,et al.  Role of annealing conditions and surface treatment on ohmic contacts to p-GaN and p-Al0.1Ga0.9N/GaN superlattices , 2001 .

[101]  Naoki Kobayashi,et al.  Low-resistance nonalloyed ohmic contact to p-type GaN using strained InGaN contact layer , 2001 .

[102]  T. L. Williamson,et al.  InGaN/Si heterojunction tandem solar cells , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[103]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[104]  H. Lüth,et al.  MBE growth optimization of InN nanowires , 2006 .

[105]  K. Kumakura,et al.  High hole concentrations in Mg-doped InGaN grown by MOVPE , 2000 .

[106]  Chia-Lung Tsai,et al.  Substrate-free large gap InGaN solar cells with bottom reflector , 2010 .

[107]  Seong Jun Park,et al.  Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN , 1999 .

[108]  Xiaodong Wang,et al.  Hole mobility in Mg-doped p-type InN films , 2008 .

[109]  S. Kurtz,et al.  Characterization and analysis of InGaN photovoltaic devices , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[110]  Akio Yamamoto,et al.  MOVPE growth of high quality p-type InGaN with intermediate In compositions , 2011 .

[111]  Chin-An Chang,et al.  Magnesium Doping of In-rich InGaN , 2007 .

[112]  Han Cheng Lee,et al.  Study of Electrical Characteristics of GaN-Based Photovoltaics With Graded In$_{x}$ Ga$_{1-{x}}$ N Absorption Layer , 2011, IEEE Photonics Technology Letters.

[113]  Akio Yamamoto,et al.  Indium nitride (InN): A review on growth, characterization, and properties , 2003 .

[114]  Ian T. Ferguson,et al.  Design and characterization of GaN∕InGaN solar cells , 2007 .

[115]  M. Jamil,et al.  Design and Realization of Wide-Band-Gap ($\sim$ 2.67 eV) InGaN p-n Junction Solar Cell , 2010, IEEE Electron Device Letters.

[116]  Hadis Morkoç,et al.  Progress and prospects of group-III nitride semiconductors , 1996 .

[117]  Alexandros Georgakilas,et al.  InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy , 2006 .

[118]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[119]  Ahmed S. Bouazzi,et al.  Theoretical possibilities of InxGa1-xN tandem PV structures , 2005 .

[120]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .

[121]  Bor Wen Liou,et al.  Design and fabrication of InxGa1-xN/GaN solar cells with a multiple-quantum-well structure on SiCN/Si(111) substrates , 2011 .

[122]  Gerald B. Stringfellow,et al.  Solid phase immiscibility in GaInN , 1996 .

[123]  B. Gil,et al.  Growth of InN quantum dots by MOVPE , 2005 .