Fifty years of eigenvalue perturbation theory

We highlight progres in the study of eigenvalue perturbation theory, especially problems connected to quantum mechanics. Six models are discussed in detail: isoelectronic atoms, autoionizing states, the anharmonic oscillator, double wells, and the Zeeman and Strak effects. Berry's phase is also discussed

[1]  V. Jaksic,et al.  EXPONENTIAL APPROACH TO THE ADIABATIC LIMIT AND THE LANDAU-ZENER FORMULA , 1992 .

[2]  Morgan,et al.  Radius of convergence and analytic behavior of the 1/Z expansion. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[3]  E. Harrell,et al.  1/R Expansion for H2+: Analyticity, Summability, Asymptotics, and Calculation of Exponentially Small Terms , 1990 .

[4]  Barry Simon,et al.  Chern numbers, quaternions, and Berry's phases in Fermi systems , 1989 .

[5]  Simón,et al.  Topological invariants in Fermi systems with time-reversal invariance. , 1988, Physical review letters.

[6]  Ruedi Seiler,et al.  Adiabatic theorems and applications to the quantum hall effect , 1987 .

[7]  B. Helffer,et al.  Effet tunnel pour l’opérateur de Schrödinger semi-classique , 1986 .

[8]  E. Harrell,et al.  The 1R expansion for H2+: Analyticity, summability, and asymptotics , 1985 .

[9]  J. Hannay,et al.  Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian , 1985 .

[10]  Barry Simon,et al.  Semiclassical analysis of low lying eigenvalues, II. Tunneling* , 1984 .

[11]  J. Paldus,et al.  1/R expansion for H/sub 2//sup +/: Analyticity, summability, asymptotics, and calculation of exponentially small terms , 1984 .

[12]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Bernard Helffer,et al.  Multiple wells in the semi-classical limit I , 1984 .

[14]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .

[15]  J. Zinn-Justin,et al.  The hydrogen atom in strong magnetic fields: Summation of the weak field series expansion , 1983 .

[16]  W. Hunziker,et al.  Stability of Schrödinger eigenvalue problems , 1982 .

[17]  E. Witten Supersymmetry and Morse theory , 1982 .

[18]  B. Simon,et al.  Schrödinger operators with magnetic fields , 1981 .

[19]  B. Simon,et al.  Dilation analyticity in constant electric field , 1981 .

[20]  J. Avron Bender-Wu formulas for the Zeeman effect in hydrogen , 1981 .

[21]  I. Problem,et al.  Dilation Analyticity in Constant Electric Field , 1981 .

[22]  B. Simon,et al.  The mathematical theory of resonances whose widths are exponentially small , 1980 .

[23]  Alan D. Sokal,et al.  An improvement of Watson’s theorem on Borel summability , 1980 .

[24]  Jean-Pierre Eckmann,et al.  Borel summability of the mass and theS-matrix in ϕ4 models , 1979 .

[25]  I. Herbst Dilation analyticity in constant electric field , 1979 .

[26]  B. G. Adams,et al.  Bender-Wu Formula, the SO(4,2) Dynamical Group, and the Zeeman Effect in Hydrogen , 1979 .

[27]  J. Zinn-Justin,et al.  Summation of divergent series by order dependent mappings: Application to the anharmonic oscillator and critical exponents in field theory , 1979 .

[28]  B. Simon,et al.  Bender-Wu Formula and the Stark Effect in Hydrogen , 1979 .

[29]  B. Simon,et al.  Some remarkable examples in eigenvalue perturbation theory , 1978 .

[30]  B. Simon,et al.  Stark Effect Revisited , 1978 .

[31]  E. Harrell On the rate of asymptotic eigenvalue degeneracy , 1978 .

[32]  I. Herbst,et al.  Spectral and scattering theory of Schrödinger operators related to the stark effect , 1977 .

[33]  R. Sénéor,et al.  Phase space cell expansion and borel summability for the Euclidean φ34 theory , 1977 .

[34]  B. Simon,et al.  The Zeeman effect revisited , 1977 .

[35]  R. Sénéor,et al.  Decay properties and borel summability for the Schwinger functions inP(Φ)2 theories , 1975 .

[36]  Complex dynamical variables for multiparticle systems with analytic interactions. I , 1974 .

[37]  Tai Tsun Wu,et al.  Anharmonic Oscillator. II. A Study of Perturbation Theory in Large Order , 1973 .

[38]  Barry Simon,et al.  Resonances in n-Body Quantum Systems With Dilatation Analytic Potentials and the Foundations of Time-Dependent Perturbation Theory , 1973 .

[39]  Barry Simon,et al.  Quadratic form techniques and the Balslev-Combes theorem , 1972 .

[40]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[41]  Fredholm equations on a Hilbert space of analytic functions , 1971 .

[42]  J. Combes,et al.  A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .

[43]  J. Combes,et al.  Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions , 1971 .

[44]  B. Simon,et al.  Borel summability: Application to the anharmonic oscillator , 1970 .

[45]  Barry Simon,et al.  Coupling constant analyticity for the anharmonic oscillator , 1970 .

[46]  Alain J. Martin,et al.  Pade approximants and the anharmonic oscillator , 1969 .

[47]  Franz Rellich,et al.  Perturbation Theory of Eigenvalue Problems , 1969 .

[48]  Tai Tsun Wu,et al.  Analytic Structure of Energy Levels in a Field-Theory Model , 1968 .

[49]  Tosio Kato Perturbation theory for linear operators , 1966 .

[50]  H. R. Pitt Divergent Series , 1951, Nature.

[51]  Tosio Kato On the Adiabatic Theorem of Quantum Mechanics , 1950 .

[52]  F. Rellich,et al.  Störungstheorie der Spektralzerlegung. V , 1941 .

[53]  F. Rellich,et al.  Störungstheorie der Spektralzerlegung. IV , 1940 .

[54]  F. Rellich Störungstheorie der Spektralzerlegung , 1939 .

[55]  F. Rellich,et al.  Störungstheorie der Spektralzerlegung , 1937 .

[56]  F. Rellich,et al.  Störungstheorie der Spektralzerlegung , 1937 .

[57]  J. Oppenheimer Three Notes on the Quantum Theory of Aperiodic Effects , 1928 .

[58]  E. Schrödinger Quantisierung als Eigenwertproblem , 1925 .