Fifty years of eigenvalue perturbation theory
暂无分享,去创建一个
[1] V. Jaksic,et al. EXPONENTIAL APPROACH TO THE ADIABATIC LIMIT AND THE LANDAU-ZENER FORMULA , 1992 .
[2] Morgan,et al. Radius of convergence and analytic behavior of the 1/Z expansion. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[3] E. Harrell,et al. 1/R Expansion for H2+: Analyticity, Summability, Asymptotics, and Calculation of Exponentially Small Terms , 1990 .
[4] Barry Simon,et al. Chern numbers, quaternions, and Berry's phases in Fermi systems , 1989 .
[5] Simón,et al. Topological invariants in Fermi systems with time-reversal invariance. , 1988, Physical review letters.
[6] Ruedi Seiler,et al. Adiabatic theorems and applications to the quantum hall effect , 1987 .
[7] B. Helffer,et al. Effet tunnel pour l’opérateur de Schrödinger semi-classique , 1986 .
[8] E. Harrell,et al. The 1R expansion for H2+: Analyticity, summability, and asymptotics , 1985 .
[9] J. Hannay,et al. Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian , 1985 .
[10] Barry Simon,et al. Semiclassical analysis of low lying eigenvalues, II. Tunneling* , 1984 .
[11] J. Paldus,et al. 1/R expansion for H/sub 2//sup +/: Analyticity, summability, asymptotics, and calculation of exponentially small terms , 1984 .
[12] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[13] Bernard Helffer,et al. Multiple wells in the semi-classical limit I , 1984 .
[14] Barry Simon,et al. Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .
[15] J. Zinn-Justin,et al. The hydrogen atom in strong magnetic fields: Summation of the weak field series expansion , 1983 .
[16] W. Hunziker,et al. Stability of Schrödinger eigenvalue problems , 1982 .
[17] E. Witten. Supersymmetry and Morse theory , 1982 .
[18] B. Simon,et al. Schrödinger operators with magnetic fields , 1981 .
[19] B. Simon,et al. Dilation analyticity in constant electric field , 1981 .
[20] J. Avron. Bender-Wu formulas for the Zeeman effect in hydrogen , 1981 .
[21] I. Problem,et al. Dilation Analyticity in Constant Electric Field , 1981 .
[22] B. Simon,et al. The mathematical theory of resonances whose widths are exponentially small , 1980 .
[23] Alan D. Sokal,et al. An improvement of Watson’s theorem on Borel summability , 1980 .
[24] Jean-Pierre Eckmann,et al. Borel summability of the mass and theS-matrix in ϕ4 models , 1979 .
[25] I. Herbst. Dilation analyticity in constant electric field , 1979 .
[26] B. G. Adams,et al. Bender-Wu Formula, the SO(4,2) Dynamical Group, and the Zeeman Effect in Hydrogen , 1979 .
[27] J. Zinn-Justin,et al. Summation of divergent series by order dependent mappings: Application to the anharmonic oscillator and critical exponents in field theory , 1979 .
[28] B. Simon,et al. Bender-Wu Formula and the Stark Effect in Hydrogen , 1979 .
[29] B. Simon,et al. Some remarkable examples in eigenvalue perturbation theory , 1978 .
[30] B. Simon,et al. Stark Effect Revisited , 1978 .
[31] E. Harrell. On the rate of asymptotic eigenvalue degeneracy , 1978 .
[32] I. Herbst,et al. Spectral and scattering theory of Schrödinger operators related to the stark effect , 1977 .
[33] R. Sénéor,et al. Phase space cell expansion and borel summability for the Euclidean φ34 theory , 1977 .
[34] B. Simon,et al. The Zeeman effect revisited , 1977 .
[35] R. Sénéor,et al. Decay properties and borel summability for the Schwinger functions inP(Φ)2 theories , 1975 .
[36] Complex dynamical variables for multiparticle systems with analytic interactions. I , 1974 .
[37] Tai Tsun Wu,et al. Anharmonic Oscillator. II. A Study of Perturbation Theory in Large Order , 1973 .
[38] Barry Simon,et al. Resonances in n-Body Quantum Systems With Dilatation Analytic Potentials and the Foundations of Time-Dependent Perturbation Theory , 1973 .
[39] Barry Simon,et al. Quadratic form techniques and the Balslev-Combes theorem , 1972 .
[40] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[41] Fredholm equations on a Hilbert space of analytic functions , 1971 .
[42] J. Combes,et al. A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .
[43] J. Combes,et al. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions , 1971 .
[44] B. Simon,et al. Borel summability: Application to the anharmonic oscillator , 1970 .
[45] Barry Simon,et al. Coupling constant analyticity for the anharmonic oscillator , 1970 .
[46] Alain J. Martin,et al. Pade approximants and the anharmonic oscillator , 1969 .
[47] Franz Rellich,et al. Perturbation Theory of Eigenvalue Problems , 1969 .
[48] Tai Tsun Wu,et al. Analytic Structure of Energy Levels in a Field-Theory Model , 1968 .
[49] Tosio Kato. Perturbation theory for linear operators , 1966 .
[50] H. R. Pitt. Divergent Series , 1951, Nature.
[51] Tosio Kato. On the Adiabatic Theorem of Quantum Mechanics , 1950 .
[52] F. Rellich,et al. Störungstheorie der Spektralzerlegung. V , 1941 .
[53] F. Rellich,et al. Störungstheorie der Spektralzerlegung. IV , 1940 .
[54] F. Rellich. Störungstheorie der Spektralzerlegung , 1939 .
[55] F. Rellich,et al. Störungstheorie der Spektralzerlegung , 1937 .
[56] F. Rellich,et al. Störungstheorie der Spektralzerlegung , 1937 .
[57] J. Oppenheimer. Three Notes on the Quantum Theory of Aperiodic Effects , 1928 .
[58] E. Schrödinger. Quantisierung als Eigenwertproblem , 1925 .