Simple and efficient representations for the fundamental solutions of Stokes flow in a half-space

We derive new formulae for the fundamental solutions of slow viscous flow, governed by the Stokes equations, in a half-space. They are simpler than the classical representations obtained by Blake and collaborators, and can be efficiently implemented using existing fast solver libraries. We show, for example, that the velocity field induced by a Stokeslet can be annihilated on the boundary (to establish a zero-slip condition) using a single reflected Stokeslet combined with a single Papkovich–Neuber potential that involves only a scalar harmonic function. The new representation has a physically intuitive interpretation.

[1]  G. Rodin,et al.  Fast solution method for three-dimensional Stokesian many-particle problems , 2000 .

[2]  Zhenhan Yao,et al.  A New Fast Multipole Boundary Element Method for Large Scale Analysis of Mechanical Properties in 3D Particle-Reinforced Composites , 2005 .

[3]  Action of a force near the planar surface between two semi-infinite immiscible liquids at very low Reynolds numbers , 1978, Bulletin of the Australian Mathematical Society.

[4]  George Biros,et al.  A fast algorithm for simulating vesicle flows in three dimensions , 2011, J. Comput. Phys..

[5]  C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow: Index , 1992 .

[6]  Jerzy Blawzdziewicz,et al.  Image system for Stokes-flow singularity between two parallel planar walls , 2002 .

[7]  Eric Darve,et al.  The black-box fast multipole method , 2009, J. Comput. Phys..

[8]  Attilio Frangi,et al.  A fast multipole implementation of the qualocation mixed-velocity-traction approach for exterior Stokes flows , 2005 .

[9]  Ramani Duraiswami,et al.  Fast Multipole Method for the Biharmonic Equation , 2005 .

[10]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[11]  R. Jones,et al.  Image representation of a spherical particle near a hard wall , 1998 .

[12]  Leslie Greengard,et al.  A fast multipole method for the three-dimensional Stokes equations , 2008, J. Comput. Phys..

[13]  Kenichi Yoshida,et al.  Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D , 2001 .

[14]  H. Y. Yu,et al.  Fundamental Singularities in a Two-Fluid Stokes Flow with a Plane Interface , 2003 .

[15]  J. R. Blake,et al.  Singularities of viscous flow , 1974 .

[16]  R. V. D. Geijn,et al.  A fast solution method for three‐dimensional many‐particle problems of linear elasticity , 1998 .

[17]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[18]  Cnlumhut Kutitrrattn,et al.  FORCE AT A POINT IN THE INTERIOR OF A SEMI-INFINITE SOLID , 2009 .

[19]  Denis Donnelly,et al.  The fast Fourier transform for experimentalists, part IV: autoregressive spectral analysis , 2005, Comput. Sci. Eng..

[20]  E. Lauga,et al.  Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations , 2012, Journal of Fluid Mechanics.

[21]  Browne,et al.  A FAST SOLUTION METHOD FOR THREE-DIMENSIONALMANY-PARTICLE PROBLEMS OF LINEAR ELASTICITYYuhong , 1998 .

[22]  H. Neuber Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel , 1934 .

[23]  Xin Wang,et al.  Algorithms in FastStokes and Its Application to Micromachined Device Simulation , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[24]  Jingfang Huang,et al.  A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations , 2007 .

[25]  Ramani Duraiswami,et al.  Fast multipole method for the biharmonic equation in three dimensions , 2006, J. Comput. Phys..

[26]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[27]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[28]  John R. Blake,et al.  Fundamental singularities of viscous flow , 1974 .

[29]  J. Blake,et al.  A note on the image system for a stokeslet in a no-slip boundary , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.