Numerical simulation of interaction between Schrödinger field and Klein-Gordon field by multisymplectic method

Abstract We propose a multisymplectic scheme to solve the coupled Klein–Gordon–Schrodinger system. The scheme preserves the multisymplectic geometry structure exactly by satisfying the discrete multisymplectic conservation law, and can simulate the original waves well in a long time. This scheme also has discrete quasi-norm conservation law. Numerical experiments demonstrate the consistency between the theoretical analysis and the numerical results.

[1]  P. Markowich,et al.  Numerical simulation of a generalized Zakharov system , 2004 .

[2]  Masahito Ohta,et al.  Stability of stationary states for the coupled Klein-Gordon-Schro¨dinger equations , 1996 .

[3]  Peter A. Dacin,et al.  Peter A , 2004 .

[4]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[5]  Luming Zhang Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space dimension , 2005, Appl. Math. Comput..

[6]  Chun Li,et al.  Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations , 2006 .

[7]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[8]  C. Schober,et al.  On the preservation of phase space structure under multisymplectic discretization , 2004 .

[9]  Jing-Bo Chen A multisymplectic integrator for the periodic nonlinear Schrödinger equation , 2005, Appl. Math. Comput..

[10]  Masayoshi Tsutsumi,et al.  On coupled Klein-Gordon-Schrödinger equations, II , 1978 .

[11]  Guo-Wei Wei,et al.  Numerical methods for the generalized Zakharov system , 2003 .

[12]  T. Bridges Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Jing-Bo Chen Multisymplectic geometry, local conservation laws and Fourier pseudospectral discretization for the "good" Boussinesq equation , 2005, Appl. Math. Comput..

[14]  C. Schober,et al.  Geometric integrators for the nonlinear Schrödinger equation , 2001 .

[15]  Bin Wang,et al.  High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation , 2005, Appl. Math. Comput..