Numerical simulation of interaction between Schrödinger field and Klein-Gordon field by multisymplectic method
暂无分享,去创建一个
[1] P. Markowich,et al. Numerical simulation of a generalized Zakharov system , 2004 .
[2] Masahito Ohta,et al. Stability of stationary states for the coupled Klein-Gordon-Schro¨dinger equations , 1996 .
[3] Peter A. Dacin,et al. Peter A , 2004 .
[4] Brian E. Moore,et al. Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.
[5] Luming Zhang. Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space dimension , 2005, Appl. Math. Comput..
[6] Chun Li,et al. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations , 2006 .
[7] S. Reich. Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .
[8] C. Schober,et al. On the preservation of phase space structure under multisymplectic discretization , 2004 .
[9] Jing-Bo Chen. A multisymplectic integrator for the periodic nonlinear Schrödinger equation , 2005, Appl. Math. Comput..
[10] Masayoshi Tsutsumi,et al. On coupled Klein-Gordon-Schrödinger equations, II , 1978 .
[11] Guo-Wei Wei,et al. Numerical methods for the generalized Zakharov system , 2003 .
[12] T. Bridges. Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] Jing-Bo Chen. Multisymplectic geometry, local conservation laws and Fourier pseudospectral discretization for the "good" Boussinesq equation , 2005, Appl. Math. Comput..
[14] C. Schober,et al. Geometric integrators for the nonlinear Schrödinger equation , 2001 .
[15] Bin Wang,et al. High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation , 2005, Appl. Math. Comput..