UNIVERSALITY OF WIGNER RANDOM MATRICES

We consider $N\times N$ symmetric or hermitian random matrices with independent, identically distributed entries where the probability distribution for each matrix element is given by a measure $\nu$ with a subexponential decay. We prove that the local eigenvalue statistics in the bulk of the spectrum for these matrices coincide with those of the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Unitary Ensemble (GUE), respectively, in the limit $N\to \infty$. Our approach is based on the study of the Dyson Brownian motion via a related new dynamics, the local relaxation flow. We also show that the Wigner semicircle law holds locally on the smallest possible scales and we prove that eigenvectors are fully delocalized and eigenvalues repel each other on arbitrarily small scales.

[1]  I. Rodnianski,et al.  Classical and quantum scattering for a class of long range random potentials , 2003 .

[2]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[3]  K. Efetov,et al.  Supersymmetry in Disorder and Chaos , 1996 .

[4]  Van H. Vu,et al.  Spectral norm of random matrices , 2007, Comb..

[5]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[6]  Herbert Spohn,et al.  Derivation of the transport equation for electrons moving through random impurities , 1977 .

[7]  Brian Rider,et al.  Diffusion at the Random Matrix Hard Edge , 2008, 0803.2043.

[8]  H. Yau,et al.  Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation , 2009, 0905.2089.

[9]  L. Fialkow,et al.  RECURSIVENESS, POSITIVITY, AND TRUNCATED , 1991 .

[10]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[11]  T. Spencer,et al.  Quasi-Diffusion in a 3D Supersymmetric Hyperbolic Sigma Model , 2009, 0901.1652.

[12]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[13]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[14]  David Hasler,et al.  Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs , 2006 .

[15]  Terence Tao,et al.  Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.

[16]  M. L. Mehta,et al.  ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .

[17]  Wigner Random Matrices with Non-Symmetrically Distributed Entries , 2007, math/0702035.

[18]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[19]  Antti Knowles,et al.  Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model , 2010, 1002.1695.

[20]  Hermann Schulz-Baldes,et al.  Semicircle law and freeness for random matrices with symmetries or correlations , 2005 .

[21]  E. Davies The Functional Calculus , 1995 .

[22]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[23]  T. Tao,et al.  Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.

[24]  Absolutely Continuous Spectra of Quantum Tree Graphs with Weak Disorder , 2005, math-ph/0504039.

[25]  H. Yau,et al.  Quantum Diffusion for the Anderson Model in the Scaling Limit , 2005, math-ph/0502025.

[26]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[27]  D. Lubinsky,et al.  Universality limits in the bulk for varying measures , 2008 .

[28]  A. Soshnikov,et al.  A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices , 1998 .

[29]  Nariyuki Minami,et al.  Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .

[30]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[31]  Alice Guionnet,et al.  Large Random Matrices: Lectures on Macroscopic Asymptotics , 2009 .

[32]  S. Péché,et al.  Bulk universality for Wigner matrices , 2009, 0905.4176.

[33]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[34]  A. Edelman,et al.  From Random Matrices to Stochastic Operators , 2006, math-ph/0607038.

[35]  B'alint Vir'ag,et al.  Large gaps between random eigenvalues. , 2008, 0811.0007.

[36]  Ohad N. Feldheim,et al.  A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.

[37]  S. Hikami,et al.  Correlations of nearby levels induced by a random potential , 1996 .

[38]  M. Aizenman,et al.  The Canopy Graph and Level Statistics for Random Operators on Trees , 2006, math-ph/0607021.

[39]  Antti Knowles,et al.  Quantum Diffusion and Delocalization for Band Matrices with General Distribution , 2010, 1005.1838.

[40]  A. Ruzmaikina Universality of the Edge Distribution of Eigenvalues of Wigner Random Matrices with Polynomially Decaying Distributions of Entries , 2006 .

[41]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[42]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[43]  Universality for certain Hermitian Wigner Matrices under weak moment conditions , 2009, 0910.4467.

[44]  J. Ramírez,et al.  Beta ensembles, stochastic Airy spectrum, and a diffusion , 2006, math/0607331.

[45]  L. Pastur,et al.  Bulk Universality and Related Properties of Hermitian Matrix Models , 2007, 0705.1050.

[46]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[47]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[48]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[49]  O. Zeitouni,et al.  A CLT for a band matrix model , 2004, math/0412040.

[50]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[51]  Localization Lengths and Boltzmann Limit for the Anderson Model at Small Disorders in Dimension 3 , 2003, math-ph/0305051.

[52]  Sasha Sodin,et al.  The spectral edge of some random band matrices , 2009, 0906.4047.

[53]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[54]  Bálint Virág,et al.  Continuum limits of random matrices and the Brownian carousel , 2007, 0712.2000.

[55]  F. Martinelli,et al.  Constructive proof of localization in the Anderson tight binding model , 1985 .

[56]  M. L. Mehta,et al.  A note on correlations between eigenvalues of a random matrix , 1971 .

[57]  A. Elgart Lifshitz tails and localization in the three-dimensional Anderson model , 2009 .

[58]  Jeffrey Schenker,et al.  Eigenvector Localization for Random Band Matrices with Power Law Band Width , 2008, 0809.4405.

[59]  T. Spencer,et al.  Anderson Localization for a Supersymmetric Sigma Model , 2009, 0910.3325.

[60]  Doron S Lubinsky A New Approach to Universality Limits Involving Orthogonal Polynomials , 2007 .

[61]  H. Yau,et al.  Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation , 1999 .

[62]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[63]  Y. Fyodorov,et al.  Scaling properties of localization in random band matrices: A sigma -model approach. , 1991, Physical review letters.

[64]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[65]  S. Péché,et al.  Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .

[66]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[67]  W. Kirsch,et al.  Anderson model with decaying randomness: mobility edge , 2000 .

[68]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[69]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[70]  Gaussian fluctuations for random matrices with correlated entries , 2006, math-ph/0607028.

[71]  D. Stroock,et al.  Probability Theory: An Analytic View , 1995, The Mathematical Gazette.

[72]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[73]  A. Klein Absolutely Continuous Spectrum in the Anderson Model on the Bethe Lattice , 1994 .

[74]  M. Disertori,et al.  Density of States for Random Band Matrices , 2002 .

[75]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[76]  J. Fröhlich,et al.  Diffusion of a Massive Quantum Particle Coupled to a Quasi-Free Thermal Medium , 2009, 0906.5178.

[77]  M. Shcherbina Edge Universality for Orthogonal Ensembles of Random Matrices , 2008, 0812.3228.

[78]  Horng-Tzer Yau,et al.  Relative entropy and hydrodynamics of Ginzburg-Landau models , 1991 .

[79]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[80]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[81]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.