Robust Estimation of the Vector Autoregressive Model by a Least Trimmed Squares Procedure

The vector autoregressive model is very popular for modeling multiple time series. Estimation of its parameters is typically done by a least squares procedure. However, this estimation method is unreliable when outliers are present in the data, and therefore we propose to estimate the vector autoregressive model by using a multivariate least trimmed squares estimator. We also show how the order of the autoregressive model can be determined in a robust way. The robust procedure is illustrated on a real data set.