Current and future directions in network biology

Network biology, an interdisciplinary field at the intersection of computational and biological sciences, is critical for deepening understanding of cellular functioning and disease. While the field has existed for about two decades now, it is still relatively young. There have been rapid changes to it and new computational challenges have arisen. This is caused by many factors, including increasing data complexity, such as multiple types of data becoming available at different levels of biological organization, as well as growing data size. This means that the research directions in the field need to evolve as well. Hence, a workshop on Future Directions in Network Biology was organized and held at the University of Notre Dame in 2022, which brought together active researchers in various computational and in particular algorithmic aspects of network biology to identify pressing challenges in this field. Topics that were discussed during the workshop include: inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Video recordings of the workshop presentations are publicly available on YouTube. For even broader impact of the workshop, this paper, co-authored mostly by the workshop participants, summarizes the discussion from the workshop. As such, it is expected to help shape short- and long-term vision for future computational and algorithmic research in network biology.

[1]  G. Ceddia,et al.  The axes of biology: a novel axes-based network embedding paradigm to decipher the functional mechanisms of the cell , 2023, bioRxiv.

[2]  Michelle M. Li,et al.  Contextualizing protein representations using deep learning on protein networks and single-cell data , 2023, bioRxiv.

[3]  R. Sharan,et al.  BERTwalk for integrating gene networks to predict gene- to pathway-level properties , 2023, Bioinformatics advances.

[4]  G. Cordasco,et al.  A Survey on Hypergraph Representation Learning , 2023, ACM Computing Surveys.

[5]  L. Farina,et al.  Network medicine for patients' stratification: From single-layer to multi-omics. , 2023, WIREs mechanisms of disease.

[6]  Xindong Wu,et al.  Unifying Large Language Models and Knowledge Graphs: A Roadmap , 2023, IEEE Transactions on Knowledge and Data Engineering.

[7]  T. Milenković,et al.  Enhancing gene co-expression network inference for the malaria parasite Plasmodium falciparum , 2023, bioRxiv.

[8]  P. Ellinor,et al.  Transfer learning enables predictions in network biology , 2023, Nature.

[9]  Jaclyn N. Taroni,et al.  Machine learning in rare disease , 2023, Nature Methods.

[10]  D. Crawford,et al.  Importance of Diversity in Precision Medicine: Generalizability of Genetic Associations Across Ancestry Groups Toward Better Identification of Disease Susceptibility Variants. , 2023, Annual review of biomedical data science.

[11]  Francesco Di Giovanni,et al.  DRew: Dynamically Rewired Message Passing with Delay , 2023, ICML.

[12]  Yunan Luo,et al.  Supervised biological network alignment with graph neural networks , 2023, bioRxiv.

[13]  A. Sarraju,et al.  The leaky pipeline of diverse race and ethnicity representation in academic science and technology training in the United States, 2003–2019 , 2023, PloS one.

[14]  G. Ceddia,et al.  A phenotype driven integrative framework uncovers molecular mechanisms of a rare hereditary thrombophilia , 2023, PloS one.

[15]  G. Ceddia,et al.  A functional analysis of omic network embedding spaces reveals key altered functions in cancer , 2023, Bioinformatics.

[16]  Fabian J Theis,et al.  Best practices for single-cell analysis across modalities , 2023, Nature Reviews Genetics.

[17]  Ziynet Nesibe Kesimoglu,et al.  SUPREME: multiomics data integration using graph convolutional networks , 2023, NAR genomics and bioinformatics.

[18]  Ziynet Nesibe Kesimoglu,et al.  GRAF: Graph Attention-aware Fusion Networks , 2023, ArXiv.

[19]  Francesco Osborne,et al.  Knowledge Graphs: Opportunities and Challenges , 2023, Artificial Intelligence Review.

[20]  J. Leskovec,et al.  Zero-shot prediction of therapeutic use with geometric deep learning and clinician centered design , 2023, medRxiv.

[21]  P. Zhao,et al.  Hierarchical graph learning for protein–protein interaction , 2023, Nature Communications.

[22]  Yuan Fang,et al.  Learning to Count Isomorphisms with Graph Neural Networks , 2023, AAAI.

[23]  M. Zitnik,et al.  Domain Adaptation for Time Series Under Feature and Label Shifts , 2023, ICML.

[24]  M. Zitnik,et al.  Multimodal representation learning for predicting molecule–disease relations , 2023, Bioinformatics.

[25]  N. Malod-Dognin,et al.  Integrated Data Analysis Uncovers New COVID-19 Related Genes and Potential Drug Re-Purposing Candidates , 2023, International journal of molecular sciences.

[26]  Zeming Lin,et al.  Evolutionary-scale prediction of atomic level protein structure with a language model , 2022, bioRxiv.

[27]  S. Ghiassian,et al.  The module triad: a novel network biology approach to utilize patients’ multi-omics data for target discovery in ulcerative colitis , 2022, Scientific reports.

[28]  I. Kohane,et al.  Deep learning for diagnosing patients with rare genetic diseases , 2022, medRxiv.

[29]  Kevin A. Murgas,et al.  Hypergraph geometry reflects higher-order dynamics in protein interaction networks , 2022, Scientific Reports.

[30]  Benjamin J. Raphael,et al.  NetMix2: A Principled Network Propagation Algorithm for Identifying Altered Subnetworks , 2022, J. Comput. Biol..

[31]  A. Barabasi,et al.  Noncoding RNAs improve the predictive power of network medicine , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Leskovec,et al.  Mutual interactors as a principle for phenotype discovery in molecular interaction networks. , 2022, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[33]  T. Przytycka,et al.  NetREX-CF integrates incomplete transcription factor data with gene expression to reconstruct gene regulatory networks , 2022, Communications Biology.

[34]  Nadezhda T. Doncheva,et al.  The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest , 2022, Nucleic Acids Res..

[35]  Michelle M. Li,et al.  Graph representation learning in biomedicine and healthcare , 2022, Nature Biomedical Engineering.

[36]  Yong Xu,et al.  General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian , 2022, Nature communications.

[37]  T. Abdelzaher,et al.  Dissecting Cross-Layer Dependency Inference on Multi-Layered Inter-Dependent Networks , 2022, CIKM.

[38]  Christopher D. Manning,et al.  Deep Bidirectional Language-Knowledge Graph Pretraining , 2022, NeurIPS.

[39]  Zaixin Zhang,et al.  Hierarchical Graph Transformer with Adaptive Node Sampling , 2022, NeurIPS.

[40]  Hao Jiang,et al.  Multiplex network infomax: Multiplex network embedding via information fusion , 2022, Digital Communications and Networks.

[41]  C. Francks,et al.  Genetic architecture of the white matter connectome of the human brain , 2022, European Neuropsychopharmacology.

[42]  Shenmin Zhang,et al.  BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining , 2022, Briefings Bioinform..

[43]  Connor W. Coley,et al.  Artificial intelligence foundation for therapeutic science , 2022, Nature Chemical Biology.

[44]  Louis V. Cammarata,et al.  Active learning for optimal intervention design in causal models , 2022, Nature Machine Intelligence.

[45]  M. Zitnik,et al.  Multimodal learning with graphs , 2022, Nature Machine Intelligence.

[46]  Himabindu Lakkaraju,et al.  Evaluating explainability for graph neural networks , 2022, Scientific Data.

[47]  J. Leskovec,et al.  ROLAND: Graph Learning Framework for Dynamic Graphs , 2022, KDD.

[48]  Anna M. Ritz,et al.  FiT: fiber-based tensor completion for drug repurposing , 2022, BCB.

[49]  Sam F L Windels,et al.  Identifying cellular cancer mechanisms through pathway-driven data integration , 2022, Bioinform..

[50]  A. Barabasi,et al.  Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization , 2022, iScience.

[51]  Shuiwang Ji,et al.  Learning Hierarchical Protein Representations via Complete 3D Graph Networks , 2022, ICLR.

[52]  J. Saez-Rodriguez,et al.  Integrating knowledge and omics to decipher mechanisms via large‐scale models of signaling networks , 2022, Molecular systems biology.

[53]  S. Im,et al.  Network-based machine learning approach to predict immunotherapy response in cancer patients , 2022, Nature Communications.

[54]  J. Kececioglu,et al.  Computing optimal factories in metabolic networks with negative regulation , 2022, Bioinformatics.

[55]  S. Savvides,et al.  Improving de novo protein binder design with deep learning , 2022, bioRxiv.

[56]  P. Guzzi,et al.  Disease spreading modeling and analysis: a survey , 2022, Briefings Bioinform..

[57]  Yu Rong,et al.  Semi-Supervised Hierarchical Graph Classification , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Xiansheng Hua,et al.  CLEAR: Cluster-Enhanced Contrast for Self-Supervised Graph Representation Learning , 2022, IEEE Transactions on Neural Networks and Learning Systems.

[59]  Yang Zhang,et al.  PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding , 2022, NeurIPS.

[60]  B. Sankaran,et al.  Robust deep learning based protein sequence design using ProteinMPNN , 2022, bioRxiv.

[61]  J. Cunningham,et al.  Detecting critical transition signals from single-cell transcriptomes to infer lineage-determining transcription factors , 2022, Nucleic acids research.

[62]  Khalique Newaz,et al.  Towards future directions in data-integrative supervised prediction of human aging-related genes , 2022, Bioinformatics advances.

[63]  J. Kececioglu,et al.  Heuristic shortest hyperpaths in cell signaling hypergraphs , 2022, Algorithms for Molecular Biology.

[64]  William E. Byrd,et al.  Progress toward a universal biomedical data translator , 2022, Clinical and translational science.

[65]  Carlos H. M. Rodrigues,et al.  CSM-Potential: mapping protein interactions and biological ligands in 3D space using geometric deep learning , 2022, Nucleic Acids Res..

[66]  M. Zitnik,et al.  Building a knowledge graph to enable precision medicine , 2022, bioRxiv.

[67]  T. Milenković,et al.  Multi‐layer sequential network analysis improves protein 3D structural classification , 2022, Proteins.

[68]  P. Radivojac,et al.  The field of protein function prediction as viewed by different domain scientists , 2022, bioRxiv.

[69]  J. Leskovec,et al.  LinkBERT: Pretraining Language Models with Document Links , 2022, ACL.

[70]  Shichao Liu,et al.  Hierarchical Graph Representation Learning for the Prediction of Drug-Target Binding Affinity , 2022, Inf. Sci..

[71]  A. Lozano,et al.  Protein Representation Learning by Geometric Structure Pretraining , 2022, ICLR.

[72]  T. Jaakkola,et al.  Generative models for molecular discovery: Recent advances and challenges , 2022, WIREs Computational Molecular Science.

[73]  J. Mervis Fix the system, not the students , 2022, Science.

[74]  A. Nandi,et al.  Heuristics and metaheuristics for biological network alignment: A review , 2022, Neurocomputing.

[75]  Nikhil S. Rao,et al.  Task-Agnostic Graph Explanations , 2022, NeurIPS.

[76]  T. Jaakkola,et al.  EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction , 2022, ICML.

[77]  Mona Singh,et al.  Learning probabilistic protein–DNA recognition codes from DNA-binding specificities using structural mappings , 2022, bioRxiv.

[78]  Sam F. L. Windels,et al.  Graphlet eigencentralities capture novel central roles of genes in pathways , 2022, PloS one.

[79]  Hao Zheng,et al.  TANGO: A GO-Term Embedding Based Method for Protein Semantic Similarity Prediction , 2022, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[80]  Ritambhara Singh,et al.  SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport , 2022, J. Comput. Biol..

[81]  H. Saibil Cryo-EM in molecular and cellular biology. , 2022, Molecular cell.

[82]  Neil Shah,et al.  Imbalanced Graph Classification via Graph-of-Graph Neural Networks , 2021, CIKM.

[83]  Daniel N. Sosa,et al.  Challenges and opportunities in network-based solutions for biological questions , 2021, Briefings Bioinform..

[84]  P. Kastritis,et al.  Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons. , 2021, Chemical reviews.

[85]  Gary D Bader,et al.  The reactome pathway knowledgebase 2022 , 2021, Nucleic Acids Res..

[86]  D. Chen,et al.  VTG-Net: A CNN Based Vessel Topology Graph Network for Retinal Artery/Vein Classification , 2021, Frontiers in Medicine.

[87]  Tijana Milenkovic,et al.  Improved supervised prediction of aging-related genes via weighted dynamic network analysis , 2021, BMC Bioinform..

[88]  Julia S. Mullen,et al.  BioThings SDK: a toolkit for building high-performance data APIs in biomedical research , 2021, bioRxiv.

[89]  M. Zitnik,et al.  Graph-Guided Network for Irregularly Sampled Multivariate Time Series , 2021, ICLR.

[90]  D. Hassabis,et al.  Protein complex prediction with AlphaFold-Multimer , 2021, bioRxiv.

[91]  N. Malod-Dognin,et al.  Network neighbors of viral targets and differentially expressed genes in COVID-19 are drug target candidates , 2021, Scientific Reports.

[92]  W. Hahn,et al.  Biologically informed deep neural network for prostate cancer discovery , 2021, Nature.

[93]  K. Fidelis,et al.  Critical assessment of methods of protein structure prediction (CASP)—Round XIV , 2021, Proteins.

[94]  L. Cowen,et al.  D-SCRIPT translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions. , 2021, Cell systems.

[95]  Feng Huang,et al.  MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks , 2021, Bioinform..

[96]  Brian A. Aguado,et al.  Network modeling predicts personalized gene expression and drug responses in valve myofibroblasts cultured with patient sera , 2021, Proceedings of the National Academy of Sciences.

[97]  Su-In Lee,et al.  Reproducibility standards for machine learning in the life sciences , 2021, Nature Methods.

[98]  Andrew M. Watkins,et al.  Geometric deep learning of RNA structure , 2021, Science.

[99]  Hao Xiong,et al.  Contrastive Multi-View Multiplex Network Embedding with Applications to Robust Network Alignment , 2021, KDD.

[100]  Natasa Przulj,et al.  Multi-project and Multi-profile joint Non-negative Matrix Factorization for cancer omic datasets , 2021, Bioinform..

[101]  A. Bonato,et al.  Graphs and Hypergraphs , 2021, Clustering.

[102]  Eunwoo Kim,et al.  Changes in the gut microbiome influence the hypoglycemic effect of metformin through the altered metabolism of branched-chain and nonessential amino acids. , 2021, Diabetes research and clinical practice.

[103]  Gisbert Schneider,et al.  Geometric deep learning on molecular representations , 2021, Nature Machine Intelligence.

[104]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[105]  Le Ou-Yang,et al.  Differential network analysis by simultaneously considering changes in gene interactions and gene expression , 2021, Bioinform..

[106]  Tom Sercu,et al.  Language models enable zero-shot prediction of the effects of mutations on protein function , 2021, bioRxiv.

[107]  Natasa Przulj,et al.  Linear functional organization of the omic embedding space , 2021, Bioinform..

[108]  Mustafa Coskun,et al.  Node similarity-based graph convolution for link prediction in biological networks , 2021, Bioinform..

[109]  B. Berger,et al.  Learning the protein language: Evolution, structure, and function. , 2021, Cell systems.

[110]  Di He,et al.  Do Transformers Really Perform Bad for Graph Representation? , 2021, ArXiv.

[111]  Kun Huang,et al.  MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification , 2021, Nature Communications.

[112]  Marinka Zitnik,et al.  Deep Contextual Learners for Protein Networks , 2021, ArXiv.

[113]  Defu Lian,et al.  Powerful graph of graphs neural network for structured entity analysis , 2021, World Wide Web.

[114]  C. Cannistraci,et al.  Age-sex population adjusted analysis of disease severity in epidemics as a tool to devise public health policies for COVID-19 , 2021, Scientific Reports.

[115]  J. Saez-Rodriguez,et al.  Advances in systems biology modeling: 10 years of crowdsourcing DREAM challenges. , 2021, Cell systems.

[116]  Bryn C. Taylor,et al.  Structure-based protein function prediction using graph convolutional networks , 2021, Nature Communications.

[117]  T. Milenković,et al.  Modeling multi-scale data via a network of networks , 2021, Bioinform..

[118]  Fabian J Theis,et al.  Graph representation learning for single-cell biology , 2021 .

[119]  J. Xia,et al.  OmicsAnalyst: a comprehensive web-based platform for visual analytics of multi-omics data , 2021, Nucleic Acids Res..

[120]  Lirong Wu,et al.  Self-Supervised Learning on Graphs: Contrastive, Generative, or Predictive , 2021, IEEE Transactions on Knowledge and Data Engineering.

[121]  O. Kohlbacher,et al.  De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet , 2021, bioRxiv.

[122]  U. Deva Priyakumar,et al.  LigGPT: Molecular Generation using a Transformer-Decoder Model , 2021 .

[123]  Charles Blundell,et al.  Neural algorithmic reasoning , 2021, Patterns.

[124]  R. Page Wikidata and the bibliography of life , 2021, bioRxiv.

[125]  Joan Bruna,et al.  Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges , 2021, ArXiv.

[126]  Ben D. Fulcher,et al.  Where the genome meets the connectome: Understanding how genes shape human brain connectivity , 2021, NeuroImage.

[127]  A. Feinberg,et al.  Statistical mechanics meets single-cell biology , 2021, Nature Reviews Genetics.

[128]  Ian K. Blaby,et al.  TRIMER: Transcription Regulation Integrated with Metabolic Regulation , 2021, bioRxiv.

[129]  David B. Blumenthal,et al.  On the limits of active module identification , 2021, Briefings Bioinform..

[130]  Matthew B. A. McDermott,et al.  Structure-inducing pre-training , 2021, Nature Machine Intelligence.

[131]  Jure Leskovec,et al.  OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs , 2021, NeurIPS Datasets and Benchmarks.

[132]  Gary D Bader,et al.  BIONIC: biological network integration using convolutions , 2021, bioRxiv.

[133]  K. Pingali,et al.  HyperNetVec: Fast and Scalable Hierarchical Embedding for Hypergraphs , 2021, NetSci-X.

[134]  Q. Nie,et al.  Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics , 2021, Nature Communications.

[135]  T. Laurent,et al.  The Transformer Network for the Traveling Salesman Problem , 2021, ArXiv.

[136]  Philip S. Yu,et al.  Graph Self-Supervised Learning: A Survey , 2021, IEEE Transactions on Knowledge and Data Engineering.

[137]  Shuiwang Ji,et al.  Self-Supervised Learning of Graph Neural Networks: A Unified Review , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[138]  Jimeng Sun,et al.  Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development , 2021, NeurIPS Datasets and Benchmarks.

[139]  Shuiwang Ji,et al.  On Explainability of Graph Neural Networks via Subgraph Explorations , 2021, ICML.

[140]  E. Antman,et al.  Comprehensive characterization of protein–protein interactions perturbed by disease mutations , 2021, Nature Genetics.

[141]  Deborah A. Weighill,et al.  Predicting genotype-specific gene regulatory networks , 2021, bioRxiv.

[142]  Deborah A. Weighill,et al.  Gene Targeting in Disease Networks , 2021, Frontiers in Genetics.

[143]  Jonathan P. Mailoa,et al.  E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials , 2021, Nature Communications.

[144]  Neil A. McCracken,et al.  Boosting detection of low abundance proteins in thermal proteome profiling experiments by addition of an isobaric trigger channel to TMT multiplexes , 2020, bioRxiv.

[145]  Jian Ma,et al.  Multiscale and integrative single-cell Hi-C analysis with Higashi , 2020, Nature Biotechnology.

[146]  Farhad Yusifov,et al.  Graph modelling for tracking the COVID-19 pandemic spread , 2020, Infectious Disease Modelling.

[147]  S. Jegelka,et al.  Counting Substructures with Higher-Order Graph Neural Networks: Possibility and Impossibility Results , 2020, ArXiv.

[148]  Philip S. Yu,et al.  A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources , 2020, IEEE Transactions on Big Data.

[149]  Jianzhu Ma,et al.  DANGO: Predicting higher-order genetic interactions , 2020 .

[150]  Li Liu,et al.  A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges , 2020, Inf. Fusion.

[151]  A. Chinnaiyan,et al.  Accelerating precision medicine in metastatic prostate cancer , 2020, Nature Cancer.

[152]  Zhangyang Wang,et al.  Graph Contrastive Learning with Augmentations , 2020, NeurIPS.

[153]  P. Bryant,et al.  Modelling the dispersion of SARS-CoV-2 on a dynamic network graph , 2020, medRxiv.

[154]  John Quackenbush,et al.  Constructing gene regulatory networks using epigenetic data , 2020, bioRxiv.

[155]  E. Almaas,et al.  Whole transcriptomic network analysis using Co-expression Differential Network Analysis (CoDiNA) , 2020, PloS one.

[156]  Qing Tan,et al.  Hypergraph models of biological networks to identify genes critical to pathogenic viral response , 2020, BMC Bioinform..

[157]  Jesper Jansson,et al.  Better Link Prediction for Protein-Protein Interaction Networks , 2020, 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE).

[158]  Sushmita Roy,et al.  Data integration for inferring context-specific gene regulatory networks. , 2020, Current opinion in systems biology.

[159]  William L. Hamilton Graph Representation Learning , 2020, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[160]  Matthew J. Silk,et al.  Multilayer and Multiplex Networks: An Introduction to Their Use in Veterinary Epidemiology , 2020, Frontiers in Veterinary Science.

[161]  Yu Liu,et al.  T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction , 2018, IEEE Transactions on Intelligent Transportation Systems.

[162]  Q. Nie,et al.  Inference and multiscale model of epithelial-to-mesenchymal transition via single-cell transcriptomic data , 2020, Nucleic acids research.

[163]  Maoguo Gong,et al.  MGAT: Multi-view Graph Attention Networks , 2020, Neural Networks.

[164]  Laurent Tichit,et al.  MultiVERSE: a multiplex and multiplex-heterogeneous network embedding approach , 2020, Scientific Reports.

[165]  Hanghang Tong,et al.  NetTrans: Neural Cross-Network Transformation , 2020, KDD.

[166]  Natasa Przulj,et al.  Integrative Data Analytic Framework to Enhance Cancer Precision Medicine , 2020, Network and systems medicine.

[167]  James M. Murphy,et al.  GLIDE: combining local methods and diffusion state embeddings to predict missing interactions in biological networks , 2020, Bioinform..

[168]  N Malod-Dognin,et al.  Chromatin network markers of leukemia , 2020, Bioinform..

[169]  Michael J. Purcaro,et al.  Expanded encyclopaedias of DNA elements in the human and mouse genomes , 2020, Nature.

[170]  Mona Singh,et al.  PertInInt: An Integrative, Analytical Approach to Rapidly Uncover Cancer Driver Genes with Perturbed Interactions and Functionalities. , 2020, Cell systems.

[171]  Ben D. Fulcher,et al.  Genetic influences on hub connectivity of the human connectome , 2020, Nature Communications.

[172]  Michelle M. Li,et al.  Subgraph Neural Networks , 2020, NeurIPS.

[173]  M. Bronstein,et al.  Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[174]  Jie Tang,et al.  Self-Supervised Learning: Generative or Contrastive , 2020, IEEE Transactions on Knowledge and Data Engineering.

[175]  Chandler Squires,et al.  Causal network models of SARS-CoV-2 expression and aging to identify candidates for drug repurposing , 2020, Nature Communications.

[176]  V. Latora,et al.  Networks beyond pairwise interactions: structure and dynamics , 2020, Physics Reports.

[177]  Abhijeet R. Sonawane,et al.  Sex Differences in Gene Expression and Regulatory Networks across 29 Human Tissues. , 2020, Cell reports.

[178]  Kaveh Hassani,et al.  Contrastive Multi-View Representation Learning on Graphs , 2020, ICML.

[179]  Lu Qin,et al.  GoGNN: Graph of Graphs Neural Network for Predicting Structured Entity Interactions , 2020, IJCAI.

[180]  J. Leskovec,et al.  Open Graph Benchmark: Datasets for Machine Learning on Graphs , 2020, NeurIPS.

[181]  Deisy Morselli Gysi,et al.  Construction, comparison and evolution of networks in life sciences and other disciplines , 2020, Journal of the Royal Society Interface.

[182]  Jimeng Sun,et al.  SkipGNN: predicting molecular interactions with skip-graph networks , 2020, Scientific Reports.

[183]  F. Grodstein,et al.  Using network science tools to identify novel diet patterns in prodromal dementia , 2020, Neurology.

[184]  A. Barabasi,et al.  Network medicine framework for identifying drug-repurposing opportunities for COVID-19 , 2020, Proceedings of the National Academy of Sciences.

[185]  Alisdair R Fernie,et al.  Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation , 2020, Expert review of proteomics.

[186]  Thomas Shafee,et al.  Wikidata as a knowledge graph for the life sciences , 2020, eLife.

[187]  Josien P. W. Pluim,et al.  clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[188]  Qingkai Zeng,et al.  Biomedical Knowledge Graphs Construction From Conditional Statements , 2020, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[189]  Mario Cannataro,et al.  L-HetNetAligner: A novel algorithm for Local Alignment of Heterogeneous Biological Networks , 2020, Scientific Reports.

[190]  Juan D. Velásquez,et al.  Employing online social networks in precision-medicine approach using information fusion predictive model to improve substance use surveillance: A lesson from Twitter and marijuana consumption , 2020, Inf. Fusion.

[191]  Carol L. Fletcher,et al.  Algebra I Before High School as a Gatekeeper to Computer Science Participation , 2020, SIGCSE.

[192]  Gary D Bader,et al.  A reference map of the human binary protein interactome , 2020, Nature.

[193]  Zhihai He,et al.  A Comprehensive Survey on Geometric Deep Learning , 2020, IEEE Access.

[194]  Joan Bruna,et al.  Can graph neural networks count substructures? , 2020, NeurIPS.

[195]  Tijana Milenkovic,et al.  Data-driven biological network alignment that uses topological, sequence, and functional information , 2020, BMC Bioinform..

[196]  Lei Xie,et al.  Heterogeneous Multi-Layered Network Model for Omics Data Integration and Analysis , 2020, Frontiers in Genetics.

[197]  Jian Ma,et al.  Probing multi-way chromatin interaction with hypergraph representation learning , 2020, bioRxiv.

[198]  Esti Yeger Lotem,et al.  Differential network analysis of multiple human tissue interactomes highlights tissue-selective processes and genetic disorder genes , 2020, Bioinform..

[199]  Philip S. Yu,et al.  Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting , 2020, Inf. Sci..

[200]  Benjamin J. Raphael,et al.  NetMix: A network-structured mixture model for reduced-bias estimation of altered subnetworks , 2020, bioRxiv.

[201]  M. Bronstein,et al.  Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning , 2019, Nature Methods.

[202]  Hanghang Tong,et al.  ORIGIN: Non-Rigid Network Alignment , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[203]  Ruochi Zhang,et al.  Hyper-SAGNN: a self-attention based graph neural network for hypergraphs , 2019, ICLR.

[204]  Hanghang Tong,et al.  MrMine: Multi-resolution Multi-network Embedding , 2019, CIKM.

[205]  John Quackenbush,et al.  lionessR: single sample network inference in R , 2019, BMC Cancer.

[206]  T M Murali,et al.  Hypergraph-based connectivity measures for signaling pathway topologies , 2019, PLoS Comput. Biol..

[207]  Tijana Milenkovic,et al.  Temporal network alignment via GoT-WAVE , 2019, Bioinform..

[208]  Benjamin M. Gyori,et al.  GeneWalk identifies relevant gene functions for a biological context using network representation learning , 2019, Genome Biology.

[209]  Tijana Milenkovi'c,et al.  Supervised prediction of aging-related genes from a context-specific protein interaction subnetwork , 2019, 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[210]  Christian Poellabauer,et al.  The power of dynamic social networks to predict individuals’ mental health , 2019, PSB.

[211]  Kayla A Johnson,et al.  Supervised learning is an accurate method for network-based gene classification , 2019, bioRxiv.

[212]  Ulrike Böhme,et al.  GeneDB and Wikidata , 2019, Wellcome open research.

[213]  Donna K. Slonim,et al.  Assessment of network module identification across complex diseases , 2019, Nature Methods.

[214]  Nitesh V. Chawla,et al.  Heterogeneous Graph Neural Network , 2019, KDD.

[215]  Carlo Zaniolo,et al.  Multifaceted protein–protein interaction prediction based on Siamese residual RCNN , 2019, Bioinform..

[216]  John Canny,et al.  Evaluating Protein Transfer Learning with TAPE , 2019, bioRxiv.

[217]  Mona Singh,et al.  Differential Allele-Specific Expression Uncovers Breast Cancer Genes Dysregulated By Cis Noncoding Mutations , 2019, bioRxiv.

[218]  Srinivasan Parthasarathy,et al.  Graph embedding on biomedical networks: methods, applications and evaluations , 2019, Bioinform..

[219]  Fabian J. Theis,et al.  Inferring Interaction Networks From Multi-Omics Data , 2019, Front. Genet..

[220]  Dimitris Samaras,et al.  Topology-Preserving Deep Image Segmentation , 2019, NeurIPS.

[221]  Christian Poellabauer,et al.  Heterogeneous Network Approach to Predict Individuals’ Mental Health , 2019, ACM Trans. Knowl. Discov. Data.

[222]  J. Leskovec,et al.  Strategies for Pre-training Graph Neural Networks , 2019, ICLR.

[223]  Tapio Salakoski,et al.  The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens , 2019, Genome Biology.

[224]  Trey Ideker,et al.  A Fast and Flexible Framework for Network-Assisted Genomic Association , 2019, iScience.

[225]  Benjamin J Raphael,et al.  Random Walks on Hypergraphs with Edge-Dependent Vertex Weights , 2019, ICML.

[226]  Roded Sharan,et al.  To Embed or Not: Network Embedding as a Paradigm in Computational Biology , 2019, Front. Genet..

[227]  Benjamin J. Hescott,et al.  Pathway centrality in protein interaction networks identifies putative functional mediating pathways in pulmonary disease , 2019, Scientific Reports.

[228]  Graphlets in Network Science and Computational Biology , 2019, Analyzing Network Data in Biology and Medicine.

[229]  Regina Barzilay,et al.  Generative Models for Graph-Based Protein Design , 2019, DGS@ICLR.

[230]  Yanfang Ye,et al.  Heterogeneous Graph Attention Network , 2019, WWW.

[231]  J. Leskovec,et al.  GNNExplainer: Generating Explanations for Graph Neural Networks , 2019, NeurIPS.

[232]  P. Rigollet,et al.  Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming , 2019, Cell.

[233]  Shraddha Pai,et al.  netDx: interpretable patient classification using integrated patient similarity networks , 2019, Molecular systems biology.

[234]  Charles E. Leisersen,et al.  EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs , 2019, AAAI.

[235]  Sam F. L. Windels,et al.  Towards a data-integrated cell , 2019, Nature Communications.

[236]  Tijana Milenkovic,et al.  Data-driven network alignment , 2019, PloS one.

[237]  Dorit S. Hochbaum,et al.  Identifying Drug Sensitivity Subnetworks with NETPHIX , 2019, bioRxiv.

[238]  David E. James,et al.  Illuminating the dark phosphoproteome , 2019, Science Signaling.

[239]  Andre Esteva,et al.  A guide to deep learning in healthcare , 2019, Nature Medicine.

[240]  Lude Franke,et al.  An integrative approach for building personalized gene regulatory networks for precision medicine , 2018, Genome Medicine.

[241]  Guoxian Yu,et al.  Predicting protein-protein interactions using high-quality non-interacting pairs , 2018, BMC Bioinformatics.

[242]  Stephan Günnemann,et al.  Pitfalls of Graph Neural Network Evaluation , 2018, ArXiv.

[243]  Abhijeet R. Sonawane,et al.  A Network Analysis of Biomarkers for Type 2 Diabetes , 2018, Diabetes.

[244]  Kevin Chen-Chuan Chang,et al.  Heterogeneous Embedding Propagation for Large-Scale E-Commerce User Alignment , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[245]  P. Sanseau,et al.  Drug repurposing: progress, challenges and recommendations , 2018, Nature Reviews Drug Discovery.

[246]  Nina Baumgarten,et al.  TEPIC 2—an extended framework for transcription factor binding prediction and integrative epigenomic analysis , 2018, Bioinform..

[247]  John Quackenbush,et al.  Gene regulatory network analysis identifies sex-linked differences in colon cancer drug metabolism processes , 2018, bioRxiv.

[248]  Pietro Liò,et al.  Deep Graph Infomax , 2018, ICLR.

[249]  L. Schiebinger,et al.  Making gender diversity work for scientific discovery and innovation , 2018, Nature Human Behaviour.

[250]  Clark Glymour,et al.  Mixed graphical models for integrative causal analysis with application to chronic lung disease diagnosis and prognosis , 2018, Bioinform..

[251]  Behnam Neyshabur,et al.  Predicting protein‐protein interactions through sequence‐based deep learning , 2018, Bioinform..

[252]  Shraddha Pai,et al.  Patient Similarity Networks for Precision Medicine. , 2018, Journal of molecular biology.

[253]  Qinghua Cui,et al.  An analysis of aging-related genes derived from the Genotype-Tissue Expression project (GTEx) , 2018, Cell Death Discovery.

[254]  Mona Singh,et al.  Systematic domain-based aggregation of protein structures highlights DNA-, RNA- and other ligand-binding positions , 2018, bioRxiv.

[255]  Tijana Milenkovic,et al.  Improving inference of the dynamic biological network underlying aging via network propagation , 2018 .

[256]  Bo Wang,et al.  Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities , 2018, Inf. Fusion.

[257]  Jure Leskovec,et al.  Embedding Logical Queries on Knowledge Graphs , 2018, NeurIPS.

[258]  Nicola De Cao,et al.  MolGAN: An implicit generative model for small molecular graphs , 2018, ArXiv.

[259]  Tijana Milenkovic,et al.  Aligning dynamic networks with DynaWAVE , 2018, Bioinform..

[260]  Bo Wang,et al.  Network enhancement as a general method to denoise weighted biological networks , 2018, Nature Communications.

[261]  Joseph Crawford,et al.  ClueNet: Clustering a temporal network based on topological similarity rather than denseness , 2018, PloS one.

[262]  John Quackenbush,et al.  Detecting phenotype-driven transitions in regulatory network structure , 2018, npj Systems Biology and Applications.

[263]  Panos J. Antsaklis,et al.  Network-based protein structural classification , 2018, Royal Society Open Science.

[264]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[265]  Dayanne M. Castro,et al.  Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells , 2018, bioRxiv.

[266]  Yang Li,et al.  PotentialNet for Molecular Property Prediction , 2018, ACS central science.

[267]  Albert-László Barabási,et al.  Network-based prediction of protein interactions , 2018, Nature Communications.

[268]  Jure Leskovec,et al.  GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models , 2018, ICML.

[269]  Razvan Pascanu,et al.  Learning Deep Generative Models of Graphs , 2018, ICLR 2018.

[270]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[271]  Nikos Komodakis,et al.  GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders , 2018, ICANN.

[272]  Roded Sharan,et al.  Using deep learning to model the hierarchical structure and function of a cell , 2018, Nature Methods.

[273]  Jure Leskovec,et al.  Modeling polypharmacy side effects with graph convolutional networks , 2018, bioRxiv.

[274]  Nataša Pržulj,et al.  Precision medicine ― A promising, yet challenging road lies ahead , 2018 .

[275]  A. Carvalho,et al.  Peripheral iron levels in children with attention-deficit hyperactivity disorder: a systematic review and meta-analysis , 2018, Scientific Reports.

[276]  Haiyuan Yu,et al.  Interactome INSIDER: a structural interactome browser for genomic studies , 2017, Nature Methods.

[277]  Edward R. Dougherty,et al.  Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors , 2017, BMC Bioinformatics.

[278]  Eivind Almaas,et al.  wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool , 2017, BMC Bioinformatics.

[279]  Jing Wang,et al.  LinkedOmics: analyzing multi-omics data within and across 32 cancer types , 2017, Nucleic Acids Res..

[280]  Scott J. Emrich,et al.  GRAFENE: Graphlet-based alignment-free network approach integrates 3D structural and sequence (residue order) data to improve protein structural comparison , 2017, Scientific Reports.

[281]  Fei Wang,et al.  Structural Deep Embedding for Hyper-Networks , 2017, AAAI.

[282]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[283]  Esti Yeger Lotem,et al.  The DifferentialNet database of differential protein–protein interactions in human tissues , 2017, Nucleic Acids Res..

[284]  P. Lambin,et al.  Radiomics: the bridge between medical imaging and personalized medicine , 2017, Nature Reviews Clinical Oncology.

[285]  Gianni De Fabritiis,et al.  DeepSite: protein‐binding site predictor using 3D‐convolutional neural networks , 2017, Bioinform..

[286]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..

[287]  Jure Leskovec,et al.  Large-Scale Analysis of Disease Pathways in the Human Interactome , 2017, bioRxiv.

[288]  Tijana Milenkovic,et al.  Pairwise Versus Multiple Global Network Alignment , 2017, IEEE Access.

[289]  S. Teichmann,et al.  A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications , 2017, Genome Medicine.

[290]  Nitesh V. Chawla,et al.  metapath2vec: Scalable Representation Learning for Heterogeneous Networks , 2017, KDD.

[291]  Wayne B. Hayes,et al.  SANA: simulated annealing far outperforms many other search algorithms for biological network alignment , 2017, Bioinform..

[292]  Jure Leskovec,et al.  Predicting multicellular function through multi-layer tissue networks , 2017, Bioinform..

[293]  Cyrus Shahabi,et al.  Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting , 2017, ICLR.

[294]  Jukka-Pekka Onnela,et al.  Biomarker correlation network in colorectal carcinoma by tumor anatomic location , 2017, BMC Bioinformatics.

[295]  Benjamin J. Raphael,et al.  Network propagation: a universal amplifier of genetic associations , 2017, Nature Reviews Genetics.

[296]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[297]  Mark Craven,et al.  A review of active learning approaches to experimental design for uncovering biological networks , 2017, PLoS Comput. Biol..

[298]  Roded Sharan,et al.  BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions , 2017, PLoS Comput. Biol..

[299]  Alessandro Rozza,et al.  Dynamic Graph Convolutional Networks , 2017, Pattern Recognit..

[300]  Paolo Di Tommaso,et al.  Nextflow enables reproducible computational workflows , 2017, Nature Biotechnology.

[301]  Shawn Gu,et al.  From homogeneous to heterogeneous network alignment via colored graphlets , 2017, Scientific Reports.

[302]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[303]  Max Welling,et al.  Modeling Relational Data with Graph Convolutional Networks , 2017, ESWC.

[304]  Predrag Radivojac,et al.  Classification in biological networks with hypergraphlet kernels , 2017, Bioinform..

[305]  Dexter Hadley,et al.  Systematic integration of biomedical knowledge prioritizes drugs for repurposing , 2017, bioRxiv.

[306]  William Stafford Noble,et al.  Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism , 2017, PLoS pathogens.

[307]  Abhijeet R. Sonawane,et al.  Understanding Tissue-Specific Gene Regulation , 2017, bioRxiv.

[308]  Tijana Milenkovic,et al.  Alignment of dynamic networks , 2017, Bioinform..

[309]  Giorgio Ausiello,et al.  Directed hypergraphs: Introduction and fundamental algorithms - A survey , 2017, Theor. Comput. Sci..

[310]  Pietro Hiram Guzzi,et al.  Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin , 2017, Briefings Bioinform..

[311]  Lin Wang,et al.  MetaDCN: meta‐analysis framework for differential co‐expression network detection with an application in breast cancer , 2016, Bioinform..

[312]  Jiawei Han,et al.  Large-Scale Embedding Learning in Heterogeneous Event Data , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[313]  Alireza F. Siahpirani,et al.  A prior-based integrative framework for functional transcriptional regulatory network inference , 2016, Nucleic acids research.

[314]  Max Welling,et al.  Variational Graph Auto-Encoders , 2016, ArXiv.

[315]  Hanghang Tong,et al.  Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model , 2016, BMC Bioinformatics.

[316]  Marcel H. Schulz,et al.  Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction , 2016, bioRxiv.

[317]  Nataša Pržulj,et al.  Graphlet-based Characterization of Directed Networks , 2016, Scientific Reports.

[318]  Adam P. Rosebrock,et al.  A global genetic interaction network maps a wiring diagram of cellular function , 2016, Science.

[319]  A. M. Arias,et al.  Transition states and cell fate decisions in epigenetic landscapes , 2016, Nature Reviews Genetics.

[320]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[321]  Lei Xie,et al.  FASCINATE: Fast Cross-Layer Dependency Inference on Multi-layered Networks , 2016, KDD.

[322]  Ernest Fraenkel,et al.  Revealing disease-associated pathways by network integration of untargeted metabolomics , 2016, Nature Methods.

[323]  Predrag Radivojac,et al.  The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease , 2016, PLoS Comput. Biol..

[324]  Ulf Leser,et al.  Comparative assessment of differential network analysis methods , 2016, Briefings Bioinform..

[325]  Johan van Leeuwaarden,et al.  Epidemic spreading on complex networks with community structures , 2016, Scientific Reports.

[326]  S. Friend,et al.  Crowdsourcing biomedical research: leveraging communities as innovation engines , 2016, Nature Reviews Genetics.

[327]  Natasa Przulj,et al.  Network analytics in the age of big data , 2016, Science.

[328]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[329]  Yongtang Shi,et al.  Fifty years of graph matching, network alignment and network comparison , 2016, Inf. Sci..

[330]  K. Aihara,et al.  Personalized characterization of diseases using sample-specific networks , 2016, bioRxiv.

[331]  Tijana Milenkovic,et al.  SCOUT: simultaneous time segmentation and community detection in dynamic networks , 2016, Scientific Reports.

[332]  Dorin Comaniciu,et al.  Shaping the Future through Innovations: From Medical Imaging to Precision Medicine , 2016, Medical Image Anal..

[333]  Vipin Vijayan,et al.  Multiple Network Alignment via MultiMAGNA++ , 2016, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[334]  Ernest Fraenkel,et al.  Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package , 2016, PLoS Comput. Biol..

[335]  Anna Ritz,et al.  Pathways on demand: automated reconstruction of human signaling networks , 2016, npj Systems Biology and Applications.

[336]  Natasa Przulj,et al.  Integrative methods for analyzing big data in precision medicine , 2016, Proteomics.

[337]  A. Barabasi,et al.  Network-based in silico drug efficacy screening , 2016, Nature Communications.

[338]  Tapio Salakoski,et al.  An expanded evaluation of protein function prediction methods shows an improvement in accuracy , 2016, Genome Biology.

[339]  Nataša Pržulj,et al.  Methods for biological data integration: perspectives and challenges , 2015, Journal of The Royal Society Interface.

[340]  Heidi L. Rehm,et al.  Building the foundation for genomics in precision medicine , 2015, Nature.

[341]  Aaron Striegel,et al.  Local versus global biological network alignment , 2015, Bioinform..

[342]  Byung-Jun Yoon,et al.  Efficient experimental design for uncertainty reduction in gene regulatory networks , 2015, BMC Bioinformatics.

[343]  O. Troyanskaya,et al.  Predicting effects of noncoding variants with deep learning–based sequence model , 2015, Nature Methods.

[344]  Nitesh V. Chawla,et al.  Representing higher-order dependencies in networks , 2015, Science Advances.

[345]  Tijana Milenkovic,et al.  MAGNA++: Maximizing Accuracy in Global Network Alignment via both node and edge conservation , 2015, Bioinform..

[346]  J. Skolnick,et al.  Insights into Disease-Associated Mutations in the Human Proteome through Protein Structural Analysis. , 2015, Structure.

[347]  Edward R. Dougherty,et al.  Optimal Experimental Design for Gene Regulatory Networks in the Presence of Uncertainty , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[348]  Giovanni Montana,et al.  Differential analysis of biological networks , 2015, BMC Bioinformatics.

[349]  Lei Meng,et al.  The post-genomic era of biological network alignment , 2015, EURASIP J. Bioinform. Syst. Biol..

[350]  John Quackenbush,et al.  Estimating Sample-Specific Regulatory Networks , 2015, iScience.

[351]  Burkhard Rost,et al.  More challenges for machine-learning protein interactions , 2015, Bioinform..

[352]  Daniel S. Himmelstein,et al.  Understanding multicellular function and disease with human tissue-specific networks , 2015, Nature Genetics.

[353]  Benjamin Haibe-Kains,et al.  A network model for angiogenesis in ovarian cancer , 2015, BMC Bioinformatics.

[354]  István A. Kovács,et al.  Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders , 2015, Cell.

[355]  Tijana Milenkovic,et al.  Proper evaluation of alignment-free network comparison methods , 2015, Bioinform..

[356]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[357]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[358]  Tijana Milenkovic,et al.  Exploring the structure and function of temporal networks with dynamic graphlets , 2014, Bioinform..

[359]  Daniel S. Himmelstein,et al.  Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes , 2014, bioRxiv.

[360]  Benjamin J. Raphael,et al.  Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes , 2014, Nature Genetics.

[361]  Daphne Koller,et al.  Sharing and Specificity of Co-expression Networks across 35 Human Tissues , 2014, PLoS Comput. Biol..

[362]  Jie Tang,et al.  Simultaneous Optimization of both Node and Edge Conservation in Network Alignment via WAVE , 2014, WABI.

[363]  Tat-Jun Chin,et al.  Clustering with Hypergraphs: The Case for Large Hyperedges , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[364]  Seunghyeon Kim,et al.  Uncovering the Nutritional Landscape of Food , 2014, PloS one.

[365]  Predrag Radivojac,et al.  Generalized graphlet kernels for probabilistic inference in sparse graphs , 2014, Network Science.

[366]  Russell Bowler,et al.  Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD , 2014, BMC Systems Biology.

[367]  Nagarajan Natarajan,et al.  Inductive matrix completion for predicting gene–disease associations , 2014, Bioinform..

[368]  Mark Craven,et al.  Inferring Host Gene Subnetworks Involved in Viral Replication , 2014, PLoS Comput. Biol..

[369]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[370]  Alain Bretto,et al.  Random walks in directed hypergraphs and application to semi-supervised image segmentation , 2014, Comput. Vis. Image Underst..

[371]  Zhuowen Tu,et al.  Similarity network fusion for aggregating data types on a genomic scale , 2014, Nature Methods.

[372]  Natasa Przulj,et al.  GR-Align: fast and flexible alignment of protein 3D structures using graphlet degree similarity , 2014, Bioinform..

[373]  Mona Singh,et al.  Interaction-based discovery of functionally important genes in cancers , 2013, Nucleic acids research.

[374]  Matthias Hein,et al.  The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited , 2013, NIPS.

[375]  Tijana Milenkovic,et al.  MAGNA: Maximizing Accuracy in Global Network Alignment , 2013, Bioinform..

[376]  Jonathan R. Karr,et al.  Accelerated discovery via a whole-cell model , 2013, Nature Methods.

[377]  Ali Shojaie,et al.  Selection and estimation for mixed graphical models. , 2013, Biometrika.

[378]  David Haussler,et al.  Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE) , 2013, Bioinform..

[379]  Noah M. Daniels,et al.  Going the Distance for Protein Function Prediction: A New Distance Metric for Protein Interaction Networks , 2013, PloS one.

[380]  Mona Singh,et al.  De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins , 2013, Nucleic acids research.

[381]  James A. Thomson,et al.  Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks , 2013, PLoS Comput. Biol..

[382]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[383]  Han Zhao,et al.  Global Network Alignment in the Context of Aging , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[384]  T. Ideker,et al.  Integrative approaches for finding modular structure in biological networks , 2013, Nature Reviews Genetics.

[385]  C. Myers,et al.  Genetic interaction networks: toward an understanding of heritability. , 2013, Annual review of genomics and human genetics.

[386]  Tijana Milenkovic,et al.  Dynamic networks reveal key players in aging , 2013, BCB.

[387]  Ryan W. Solava,et al.  Revealing missing parts of the interactome , 2013, 1307.3329.

[388]  C. Huttenhower,et al.  Passing Messages between Biological Networks to Refine Predicted Interactions , 2013, PloS one.

[389]  Edward R. Dougherty,et al.  Quantifying the Objective Cost of Uncertainty in Complex Dynamical Systems , 2013, IEEE Transactions on Signal Processing.

[390]  J C Costello,et al.  Seeking the Wisdom of Crowds Through Challenge‐Based Competitions in Biomedical Research , 2013, Clinical pharmacology and therapeutics.

[391]  Ulrik Brandes,et al.  What is network science? , 2013, Network Science.

[392]  Richard Bonneau,et al.  Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks , 2013, Bioinform..

[393]  C. Jack,et al.  Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity , 2013, Proceedings of the National Academy of Sciences.

[394]  Daniel W. A. Buchan,et al.  A large-scale evaluation of computational protein function prediction , 2013, Nature Methods.

[395]  P. Aloy,et al.  Interactome3D: adding structural details to protein networks , 2013, Nature Methods.

[396]  Shane J. Neph,et al.  Circuitry and Dynamics of Human Transcription Factor Regulatory Networks , 2012, Cell.

[397]  Tijana Milenkovic,et al.  Graphlet-based edge clustering reveals pathogen-interacting proteins , 2012, Bioinform..

[398]  Ernest Fraenkel,et al.  SAMNet: a network-based approach to integrate multi-dimensional high throughput datasets. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[399]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[400]  Lawrence E Hunter,et al.  Reporting Actionable Research Results: Shared Secrets Can Save Lives , 2012, Science Translational Medicine.

[401]  Tamer Kahveci,et al.  Accessed Terms of Use , 2022 .

[402]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[403]  Gary D. Stormo,et al.  Recognition models to predict DNA-binding specificities of homeodomain proteins , 2012, Bioinform..

[404]  Christian Borgs,et al.  Simultaneous Reconstruction of Multiple Signaling Pathways via the Prize-Collecting Steiner Forest Problem , 2012, J. Comput. Biol..

[405]  Cristian Sminchisescu,et al.  Efficient Hypergraph Clustering , 2012, AISTATS.

[406]  Ram Ramanathan,et al.  Dynamic Shortest Path Algorithms for Hypergraphs , 2012, IEEE/ACM Transactions on Networking.

[407]  Michael Mitzenmacher,et al.  Detecting Novel Associations in Large Data Sets , 2011, Science.

[408]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[409]  N. Price,et al.  Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis , 2010, Proceedings of the National Academy of Sciences.

[410]  Alexandros Nanopoulos,et al.  Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data , 2010, J. Mach. Learn. Res..

[411]  Vladimir Vacic,et al.  Graphlet Kernels for Prediction of Functional Residues in Protein Structures , 2010, J. Comput. Biol..

[412]  Timothy R. O'Connor,et al.  Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae , 2010, Bioinform..

[413]  Roded Sharan,et al.  Associating Genes and Protein Complexes with Disease via Network Propagation , 2010, PLoS Comput. Biol..

[414]  Tina Eliassi-Rad,et al.  Evaluating Statistical Tests for Within-Network Classifiers of Relational Data , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[415]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[416]  E. Schadt Molecular networks as sensors and drivers of common human diseases , 2009, Nature.

[417]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[418]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[419]  Steffen Klamt,et al.  Hypergraphs and Cellular Networks , 2009, PLoS Comput. Biol..

[420]  Kurt Mehlhorn,et al.  Efficient graphlet kernels for large graph comparison , 2009, AISTATS.

[421]  D. Karger,et al.  Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity , 2009, Nature Genetics.

[422]  Arie Budovsky,et al.  The Human Ageing Genomic Resources: online databases and tools for biogerontologists , 2009, Aging cell.

[423]  O. Kuchaiev,et al.  Topological network alignment uncovers biological function and phylogeny , 2008, Journal of The Royal Society Interface.

[424]  Carl W. Cotman,et al.  Gene expression changes in the course of normal brain aging are sexually dimorphic , 2008, Proceedings of the National Academy of Sciences.

[425]  Bonnie Berger,et al.  Global alignment of multiple protein interaction networks with application to functional orthology detection , 2008, Proceedings of the National Academy of Sciences.

[426]  N. Christakis,et al.  Social Networks and Health , 2008 .

[427]  Karsten M. Borgwardt,et al.  Graph Kernels , 2008, J. Mach. Learn. Res..

[428]  L. Hood,et al.  Gene expression dynamics in the macrophage exhibit criticality , 2008, Proceedings of the National Academy of Sciences.

[429]  Tijana Milenkoviæ,et al.  Uncovering Biological Network Function via Graphlet Degree Signatures , 2008, Cancer informatics.

[430]  A. Califano,et al.  Dialogue on Reverse‐Engineering Assessment and Methods , 2007, Annals of the New York Academy of Sciences.

[431]  E. Todeva Networks , 2007 .

[432]  Mark W. Schmidt,et al.  Learning Graphical Model Structure Using L1-Regularization Paths , 2007, AAAI.

[433]  Roded Sharan,et al.  SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments , 2007, ISMB/ECCB.

[434]  Wojciech Szpankowski,et al.  Functional annotation of regulatory pathways , 2007, ISMB/ECCB.

[435]  Roni Khardon,et al.  Learning from interpretations: a rooted kernel for ordered hypergraphs , 2007, ICML '07.

[436]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[437]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[438]  Bernhard Schölkopf,et al.  Learning with Hypergraphs: Clustering, Classification, and Embedding , 2006, NIPS.

[439]  Hui Xiong,et al.  Transitive closure and metric inequality of weighted graphs: detecting protein interaction modules using cliques , 2006, Int. J. Data Min. Bioinform..

[440]  Serge J. Belongie,et al.  Higher order learning with graphs , 2006, ICML.

[441]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[442]  T. Ideker,et al.  Modeling cellular machinery through biological network comparison , 2006, Nature Biotechnology.

[443]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[444]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[445]  Teresa M. Przytycka,et al.  Decomposition of overlapping protein complexes: A graph theoretical method for analyzing static and dynamic protein associations , 2005, Algorithms for Molecular Biology.

[446]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[447]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[448]  Sarel J Fleishman,et al.  Comment on "Network Motifs: Simple Building Blocks of Complex Networks" and "Superfamilies of Evolved and Designed Networks" , 2004, Science.

[449]  Emad Ramadan,et al.  A hypergraph model for the yeast protein complex network , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[450]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[451]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[452]  Nir Friedman,et al.  Learning Module Networks , 2002, J. Mach. Learn. Res..

[453]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[454]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[455]  Nir Friedman,et al.  Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm , 1999, UAI.

[456]  Maria Grazia Scutellà,et al.  Flows on hypergraphs , 1997, Math. Program..

[457]  K Fidelis,et al.  A large‐scale experiment to assess protein structure prediction methods , 1995, Proteins.

[458]  J Alper,et al.  The Pipeline Is Leaking Women All the Way Along , 1993, Science.

[459]  Dorothea Wagner,et al.  Modeling Hypergraphs by Graphs with the Same Mincut Properties , 1993, Inf. Process. Lett..

[460]  Jason Cong,et al.  Random walks for circuit clustering , 1991, [1991] Proceedings Fourth Annual IEEE International ASIC Conference and Exhibit.

[461]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[462]  Robert L. Hemminger,et al.  Graph reconstruction - a survey , 1977, J. Graph Theory.

[463]  Yoshua Bengio,et al.  Benchmarking Graph Neural Networks , 2023, J. Mach. Learn. Res..

[464]  J. Kececioglu,et al.  Computing Shortest Hyperpaths for Pathway Inference in Cellular Reaction Networks , 2023, Annual International Conference on Research in Computational Molecular Biology.

[465]  Chen Lin,et al.  Resolving Power Equipment Data Inconsistency via Heterogeneous Network Alignment , 2023, IEEE Access.

[466]  S. Jegelka,et al.  The Power of Recursion in Graph Neural Networks for Counting Substructures , 2023, AISTATS.

[467]  L. Zhan,et al.  Revealing Continuous Brain Dynamical Organization with Multimodal Graph Transformer , 2022, International Conference on Medical Image Computing and Computer-Assisted Intervention.

[468]  Wenjun Wang,et al.  Network Alignment enhanced via modeling heterogeneity of anchor nodes , 2022, Knowledge-Based Systems.

[469]  Yanfang Ye,et al.  Multi-view Self-supervised Heterogeneous Graph Embedding , 2021, ECML/PKDD.

[470]  Shandong Wu,et al.  Disentangled and Proportional Representation Learning for Multi-view Brain Connectomes , 2021, MICCAI.

[471]  A. Valencia,et al.  Online Supplement: Unveiling new disease, pathway, and gene associations via multi-scale neural networks , 2020 .

[472]  Jens Lehmann,et al.  Constructing Knowledge Graphs and Their Biomedical Applications , 2019 .

[473]  Heng Huang,et al.  Brain Connectome Based Complex Brain Disorder Prediction via Novel Graph-Blind Convolutional Network , 2019 .

[474]  Natasa Przulj,et al.  Patient-Specific Data Fusion for Cancer Stratification and Personalised Treatment , 2016, PSB.

[475]  T M Murali,et al.  Signaling hypergraphs. , 2014, Trends in biotechnology.

[476]  A. Barabasi,et al.  Uncovering disease-disease relationships through the incomplete interactome , 2015, Science.

[477]  Sven Rahmann,et al.  Genome analysis , 2022 .

[478]  N. Gulbahce,et al.  Network medicine: a network-based approach to human disease , 2010, Nature Reviews Genetics.

[479]  Eamonn J. Keogh Nearest Neighbor , 2010, Encyclopedia of Machine Learning.

[480]  Tina Eliassi-Rad,et al.  Correcting evaluation bias of relational classifiers with network cross validation , 2010, Knowledge and Information Systems.

[481]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[482]  Qifang Liu,et al.  Align human interactome with phenome to identify causative genes and networks underlying disease families , 2009, Bioinform..

[483]  Neil E. Jacobsen,et al.  NMR spectroscopy explained : simplified theory, applications and examples for organic chemistry and structural biology , 2007 .

[484]  Gale S. Rhodes Crystallography Made Crystal Clear, Third Edition: A Guide for Users of Macromolecular Models , 2006 .

[485]  Hans-Peter Kriegel,et al.  Protein function prediction via graph kernels , 2005, ISMB.

[486]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[487]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[488]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.