Bacterial computing with engineered populations

We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell–cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research.

[1]  Drew Endy,et al.  Engineered cell-cell communication via DNA messaging , 2012, Journal of biological engineering.

[2]  Martyn Amos,et al.  Theoretical and Experimental DNA Computation , 1999, Bull. EATCS.

[3]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[4]  L. Vielva,et al.  Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. , 2006, FEMS microbiology reviews.

[5]  L. Tsimring,et al.  A synchronized quorum of genetic clocks , 2009, Nature.

[6]  J W Wimpenny,et al.  Individual-based modelling of biofilms. , 2001, Microbiology.

[7]  Ron Weiss,et al.  Cellular computation and communications using engineered genetic regulatory networks , 2001, Cellular Computing.

[8]  Martyn Amos,et al.  Multicellular Computing Using Conjugation for Wiring , 2013, PloS one.

[9]  Martyn Amos,et al.  Model for a population-based microbial oscillator , 2011, Biosyst..

[10]  Martyn Amos,et al.  Continuous computation in engineered gene circuits , 2012, Biosyst..

[11]  N. Brown,et al.  The MerR family of transcriptional regulators. , 2003, FEMS microbiology reviews.

[12]  R. Murray,et al.  Timing molecular motion and production with a synthetic transcriptional clock , 2011, Proceedings of the National Academy of Sciences.

[13]  Jeff Hasty Design then mutate , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Ilka M. Axmann,et al.  Small RNAs establish delays and temporal thresholds in gene expression. , 2008, Biophysical journal.

[15]  Antoine Danchin,et al.  Synthetic biology: discovering new worlds and new words , 2008, EMBO reports.

[16]  Christopher A. Voigt,et al.  Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’ , 2011, Nature.

[17]  Alfonso Jaramillo,et al.  Genetdes: automatic design of transcriptional networks , 2007, Bioinform..

[18]  Eric Klavins,et al.  Specification and simulation of synthetic multicelled behaviors. , 2012, ACS synthetic biology.

[19]  D. Gil,et al.  ColE1-type vectors with fully repressible replication. , 1991, Gene.

[20]  Timothy K Lu,et al.  Synthetic circuits integrating logic and memory in living cells , 2013, Nature Biotechnology.

[21]  Cristian Picioreanu,et al.  iDynoMiCS: next-generation individual-based modelling of biofilms. , 2011, Environmental microbiology.

[22]  Leandro Nunes de Castro,et al.  Fundamentals of natural computing: an overview , 2007 .

[23]  Ron Weiss,et al.  Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium , 2007, Proceedings of the National Academy of Sciences.

[24]  Alfonso Jaramillo,et al.  Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors , 2011, Nucleic acids research.

[25]  P. Oldham,et al.  Synthetic Biology: Mapping the Scientific Landscape , 2012, PloS one.

[26]  J. Seoane,et al.  Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual-based modelling study. , 2011, Environmental microbiology.

[27]  Fernando de la Cruz,et al.  Mobility of Plasmids , 2010, Microbiology and Molecular Biology Reviews.

[28]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[29]  M. di Bernardo,et al.  A comparative analysis of synthetic genetic oscillators , 2010, Journal of The Royal Society Interface.

[30]  Andrew Phillips,et al.  Computational modeling of synthetic microbial biofilms. , 2012, ACS synthetic biology.

[31]  Stefanie Hertel,et al.  Revealing a Two-Loop Transcriptional Feedback Mechanism in the Cyanobacterial Circadian Clock , 2013, PLoS Comput. Biol..

[32]  Drew Endy,et al.  Amplifying Genetic Logic Gates , 2013, Science.

[33]  F. Arnold,et al.  Engineering microbial consortia: a new frontier in synthetic biology. , 2008, Trends in biotechnology.

[34]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[35]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[36]  F. de la Cruz,et al.  Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. , 1991, Gene.

[37]  Markus Wieland,et al.  Programmable single-cell mammalian biocomputers , 2012, Nature.

[38]  R. Weiss,et al.  Directed evolution of a genetic circuit , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  F. Gomis-Rüth,et al.  Bacterial conjugation: a two‐step mechanism for DNA transport , 2002, Molecular microbiology.

[40]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[41]  Stephen M. Krone,et al.  Modelling the spatial dynamics of plasmid transfer and persistence. , 2007, Microbiology.

[42]  Mark C M van Loosdrecht,et al.  A framework for multidimensional modelling of activity and structure of multispecies biofilms. , 2005, Environmental microbiology.

[43]  G. Booth,et al.  BacSim, a simulator for individual-based modelling of bacterial colony growth. , 1998, Microbiology.

[44]  Fernando de la Cruz,et al.  Determination of conjugation rates on solid surfaces. , 2012, Plasmid.

[45]  Albert J R Heck,et al.  A sequestration feedback determines dynamics and temperature entrainment of the KaiABC circadian clock , 2010, Molecular systems biology.

[46]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[47]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[48]  Friedrich C Simmel,et al.  Communication and computation by bacteria compartmentalized within microemulsion droplets. , 2014, Journal of the American Chemical Society.

[49]  Stefan Legewie,et al.  Multi-Target Regulation by Small RNAs Synchronizes Gene Expression Thresholds and May Enhance Ultrasensitive Behavior , 2012, PloS one.

[50]  Alfonso Jaramillo,et al.  AutoBioCAD: full biodesign automation of genetic circuits. , 2013, ACS synthetic biology.

[51]  Alfonso Jaramillo,et al.  Perspectives on the automatic design of regulatory systems for synthetic biology , 2012, FEBS letters.

[52]  Jesus Miro-Bueno,et al.  A Simple Negative Interaction in the Positive Transcriptional Feedback of a Single Gene Is Sufficient to Produce Reliable Oscillations , 2011, PloS one.

[53]  Martyn Amos,et al.  A reconfigurable NAND/NOR genetic logic gate , 2012, BMC Systems Biology.

[54]  Javier Macía,et al.  Distributed biological computation with multicellular engineered networks , 2011, Nature.

[55]  M. Elowitz,et al.  Combinatorial Synthesis of Genetic Networks , 2002, Science.

[56]  B. Wilkins,et al.  Processing of plasmid DNA during bacterial conjugation. , 1984, Microbiological reviews.

[57]  P. Marlière,et al.  A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains. , 2005, Research in microbiology.

[58]  Karen M Polizzi What is synthetic biology? , 2013, Methods in molecular biology.

[59]  Alfonso Jaramillo,et al.  Full Design Automation of Multi-State RNA Devices to Program Gene Expression Using Energy-Based Optimization , 2013, PLoS Comput. Biol..

[60]  Martyn Amos,et al.  Population-based microbial computing: a third wave of synthetic biology? , 2014, Int. J. Gen. Syst..