Approximation Algorithms for Complex-Valued Ising Models on Bounded Degree Graphs

We study the problem of approximating the Ising model partition function with complex parameters on bounded degree graphs. We establish a deterministic polynomial-time approximation scheme for the partition function when the interactions and external fields are absolutely bounded close to zero. Furthermore, we prove that for this class of Ising models the partition function does not vanish. Our algorithm is based on an approach due to Barvinok for approximating evaluations of a polynomial based on the location of the complex zeros and a technique due to Patel and Regts for efficiently computing the leading coefficients of graph polynomials on bounded degree graphs. Finally, we show how our algorithm can be extended to approximate certain output probability amplitudes of quantum circuits.

[1]  Piyush Srivastava,et al.  The Ising Partition Function: Zeros and Deterministic Approximation , 2017 .

[2]  Leslie Ann Goldberg,et al.  The Complexity of Approximating complex-valued Ising and Tutte partition functions , 2014, computational complexity.

[3]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[4]  W. Dur,et al.  Quantum algorithms for classical lattice models , 2011, 1104.2517.

[5]  V. Buchstaber,et al.  Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .

[6]  Allan Sly,et al.  The Computational Hardness of Counting in Two-Spin Models on d-Regular Graphs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[7]  Keisuke Fujii,et al.  Commuting quantum circuits and complexity of Ising partition functions , 2013, ArXiv.

[8]  Leslie Ann Goldberg,et al.  A Complexity Dichotomy for Partition Functions with Mixed Signs , 2010, SIAM J. Comput..

[9]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[11]  Alexander I. Barvinok,et al.  Combinatorics and Complexity of Partition Functions , 2017, Algorithms and combinatorics.

[12]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Catherine S. Greenhill,et al.  The complexity of counting graph homomorphisms , 2000 .

[14]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[15]  J. Eisert,et al.  Architectures for quantum simulation showing a quantum speedup , 2017, 1703.00466.

[16]  Eric Vigoda,et al.  Inapproximability of the Partition Function for the Antiferromagnetic Ising and Hard-Core Models , 2012, Combinatorics, Probability and Computing.

[17]  Allan Sly,et al.  Computational Transition at the Uniqueness Threshold , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[18]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[19]  Jin-Yi Cai,et al.  Graph Homomorphisms with Complex Values: A Dichotomy Theorem , 2009, SIAM J. Comput..

[20]  Andrei A. Bulatov,et al.  The complexity of partition functions , 2005, Theor. Comput. Sci..

[21]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[22]  M. Bremner,et al.  Instantaneous Quantum Computation , 2008, 0809.0847.

[23]  Alexander I. Barvinok,et al.  Computing the Permanent of (Some) Complex Matrices , 2014, Foundations of Computational Mathematics.

[24]  Lior Eldar,et al.  Approximating the Permanent of a Random Matrix with Vanishing Mean , 2017, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[25]  Jerrold R. Griggs,et al.  Journal of Combinatorial Theory, Series A , 2011 .

[26]  G. K. Brennen,et al.  Low Depth Quantum Circuits for Ising Models , 2012, 1208.3918.

[27]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[28]  Alexander I. Barvinok,et al.  Computing the Partition Function for Cliques in a Graph , 2014, Theory Comput..

[29]  L. Duan,et al.  Quantum Supremacy for Simulating a Translation-Invariant Ising Spin Model. , 2016, Physical review letters.

[30]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  László Lovász,et al.  Left and right convergence of graphs with bounded degree , 2010, Random Struct. Algorithms.

[32]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[33]  Piyush Srivastava,et al.  Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs , 2011, Journal of Statistical Physics.

[34]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[35]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[36]  Alexander I. Barvinok,et al.  Computing the partition function for graph homomorphisms , 2014, Comb..