Mapping nanoscale thermal transfer in-liquid environment—immersion scanning thermal microscopy

Nanoscale heat transport is of increasing importance as it often defines performance of modern processors and thermoelectric nanomaterials, and affects functioning of chemical sensors and biosensors. Scanning thermal microscopy (SThM) is the leading tool for nanoscale mapping of thermal properties, but it is often negatively affected by unstable tip-surface thermal contacts. While operating SThM in-liquid environment may allow unimpeded thermal contact and open new application areas, it has so far been regarded as impossible due to increased heat dissipation into the liquid, and the perceived reduced spatial thermal resolution. Nevertheless, in this paper we show that such liquid immersion SThM (iSThM) is fully feasible and, while its thermal sensitivity and spatial resolution is somewhat below that of in-air SThM, it has sufficient thermal contrast to detect thermal conductivity variations in few tens of nm thick graphite nanoflake and metal-polymer nanostructured interconnects. Our results confirm that thermal sensing in iSThM can provide nanoscale resolution on the order of 30 nm, that, coupled with the absence of tip snap-in due to the elimination of capillary forces, opens the possibility for nanoscale thermal mapping in liquids, including thermal phenomena in energy storage devices, catalysts and biosystems.

[1]  P. Reddy,et al.  Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. , 2012, ACS nano.

[2]  R. Carminati,et al.  Image formation in near-field optics , 1997 .

[3]  M. Mortier,et al.  Note: A scanning thermal probe microscope that operates in liquids. , 2011, The Review of scientific instruments.

[4]  P. Dobson,et al.  Microfabricated temperature standard based on Johnson noise measurement for the calibration of micro- and nano-thermometers , 2005 .

[5]  D. Zeze,et al.  Nanoscale spatial resolution probes for scanning thermal microscopy of solid state materials , 2011, 1110.6055.

[6]  H. Hansma,et al.  Properties of biomolecules measured from atomic force microscope images: a review. , 1997, Journal of structural biology.

[7]  O. Kolosov,et al.  Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing , 2011, Nanotechnology.

[8]  S. K. Murad,et al.  Generic scanned-probe microscope sensors by combined micromachining and electron-beam lithography , 1998 .

[9]  A. Raman,et al.  Nonlinear dynamics of the atomic force microscope at the liquid-solid interface , 2012 .

[10]  A. Majumdar SCANNING THERMAL MICROSCOPY , 1999, Annual Review of Materials Science.

[11]  Y. Harada,et al.  Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy , 2012, Nature Communications.

[12]  J. Barrat,et al.  Kapitza resistance at the liquid—solid interface , 2002, cond-mat/0209607.

[13]  Louis E. Brus,et al.  High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon , 2011, 1110.2984.

[14]  M. Plissonnier,et al.  "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe. , 2009, Nano letters.

[15]  A. Majumdar,et al.  Thermal Transport Mechanisms at Nanoscale Point Contacts , 2002 .

[16]  Thomas W. Kenny,et al.  Low‐stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope , 1996 .

[17]  Oleg Kolosov,et al.  Nanometer-scale mechanical imaging of aluminum damascene interconnect structures in a low-dielectric-constant polymer. , 2002 .

[18]  Z. Ioffe,et al.  Detection of heating in current-carrying molecular junctions by Raman scattering. , 2008, Nature nanotechnology.

[19]  B. Gotsmann,et al.  High resolution vacuum scanning thermal microscopy of HfO2 and SiO2 , 2008 .

[20]  A. A. Balandin,et al.  Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite , 2009, 0904.0607.

[21]  Quantitative scanning thermal microscopy of ErAs/GaAs superlattice structures grown by molecular beam epitaxy , 2013 .

[22]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[23]  D. Zeze,et al.  Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures. , 2012, Nano letters.

[24]  H. K. Wickramasinghe,et al.  Scanning thermal profiler , 1986 .

[25]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[26]  R. Williams,et al.  Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy , 1998 .

[27]  S. Dilhaire,et al.  Scanning thermal microscopy of individual silicon nanowires , 2011 .

[28]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[29]  Dongping Liu,et al.  A review of advanced scanning probe microscope analysis of functional films and semiconductor devices , 2009 .

[30]  Kenneth E. Goodson,et al.  Phonon scattering in silicon films with thickness of order 100 nm , 1999 .

[31]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[32]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[33]  H. Pollock,et al.  Micro-thermal analysis: techniques and applications , 2001 .

[34]  A. Govindaraj,et al.  Graphene-based electrochemical supercapacitors , 2008 .

[35]  G. J. Brakenhoff,et al.  Confocal scanning light microscopy with high aperture immersion lenses , 1979 .

[36]  T. Gotszalk,et al.  Thermal mapping of a scanning thermal microscopy tip. , 2013, Ultramicroscopy.

[37]  O. Kwon,et al.  Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air. , 2011, ACS nano.

[38]  Baowen Li,et al.  Thermal logic gates: computation with phonons. , 2007, Physical review letters.

[39]  James Hone,et al.  Investigation of Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide , 2012 .

[40]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[41]  J. Schumann,et al.  Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. , 2010, Nature materials.

[42]  Butt,et al.  Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. , 1992, Physical review. B, Condensed matter.

[43]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[44]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[45]  F. Jülicher,et al.  Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  Shahram Vaezy,et al.  Polyacrylamide gel as an acoustic coupling medium for focused ultrasound therapy. , 2003, Ultrasound in medicine & biology.

[47]  Li Shi,et al.  Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes , 2000 .

[48]  Ali Shakouri,et al.  Heat Transfer in Nanostructures for Solid-State Energy Conversion , 2002 .

[49]  V. Tsukruk,et al.  Microthermal analysis of polymeric materials , 2002 .

[50]  H. Zabel Phonons in layered compounds , 2001 .

[51]  Y. Gianchandani,et al.  Applications of a low contact force polyimide shank bolometer probe for chemical and biological diagnostics , 2003 .

[52]  H. K. Wickramasinghe,et al.  Scanning probe microscopy of thermal conductivity and subsurface properties , 1992 .

[53]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .