Optical vortex trap for resonant confinement of metal nanoparticles.

The confinement and controlled movement of metal nanoparticles and nanorods is an emergent area within optical micromanipulation. In this letter we experimentally realise a novel trapping geometry near the plasmon resonance using an annular light field possessing a helical phasefront that confines the nanoparticle to the vortex core (dark) region. We interpret our data with a theoretical framework based upon the Maxwell stress tensor formulation to elucidate the total forces upon nanometric particles near the particle plasmon resonance. Rotation of the particle due to orbital angular momentum transfer is observed. This geometry may have several advantages for advanced manipulation of metal nanoparticles.

[1]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[2]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[3]  James P. Gordon,et al.  Radiation Forces and Momenta in Dielectric Media , 1973 .

[4]  Iver Brevik,et al.  Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor , 1979 .

[5]  A. Ashkin,et al.  Applications of laser radiation pressure. , 1980, Science.

[6]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[7]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[8]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[9]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[10]  K. Dholakia,et al.  High-order Laguerre-Gaussian laser modes for studies of cold atoms , 1998 .

[11]  Miles J. Padgett,et al.  Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner , 2000 .

[12]  E. Stelzer,et al.  Optical trapping of dielectric particles in arbitrary fields. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Kishan Dholakia,et al.  Three-dimensional arrays of optical bottle beams , 2003 .

[14]  M. Nieto-Vesperinas,et al.  Near-field photonic forces , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Mattias Goksör,et al.  Optical Spectroscopy of Single Trapped Metal Nanoparticles in Solution , 2004 .

[16]  M. Nieto-Vesperinas,et al.  Correction for Nieto-Vesperinas et al., Near-field photonic forces , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  Masud Mansuripur Radiation pressure and the linear momentum of the electromagnetic field. , 2004, Optics express.

[18]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[19]  D. S. Bradshaw,et al.  Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes. , 2005, Optics letters.

[20]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods by using plasmon resonances. , 2006 .

[21]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods using plasmon resonances , 2006, SPIE Optics + Photonics.

[22]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[23]  Fredrik Svedberg,et al.  Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. , 2006, Nano letters.

[24]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[25]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[26]  Karsten König,et al.  A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas. , 2007, Nano letters.

[27]  P Guyot-Sionnest,et al.  Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. , 2007, Optics express.

[28]  H. Metcalf,et al.  Laser Cooling and Trapping of Neutral Atoms , 2004 .