Multilevel Representation and Transmission of Real Objects with Progressive Octree Particles

We present a multilevel representation scheme adapted to storage, progressive transmission, and rendering of dense data sampled on the surface of real objects. Geometry and object attributes, such as color and normal, are encoded in terms of surface particles associated to a hierarchical space partitioning based on an octree. Appropriate ordering of surface particles results in a compact multilevel representation without increasing the size of the uniresolution model corresponding to the highest level of detail. This compact representation can progressively be decoded by the viewer and transformed by a fast direct triangulation technique into a sequence of triangle meshes with increasing levels of detail. The representation requires approximately 5 bits per particle (2.5 bits per triangle) to encode the basic geometrical structure. The vertex positions can then be refined by means of additional precision bits, resulting in 5 to 9 bits per triangle for representing a 12-bit quantized geometry. The proposed representation scheme is demonstrated with the surface data of various real objects.

[1]  Paolo Cignoni,et al.  Multiresolution decimation based on global error , 1996, The Visual Computer.

[2]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[3]  Francis J. M. Schmitt,et al.  3D color object reconstruction from 2D image sequences , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[4]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[5]  Carlo H. Séquin,et al.  Adaptive display algorithm for interactive frame rates during visualization of complex virtual environments , 1993, SIGGRAPH.

[6]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[7]  A. Laurentini,et al.  The Visual Hull Concept for Silhouette-Based Image Understanding , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Pat Hanrahan,et al.  Hierarchical splatting: a progressive refinement algorithm for volume rendering , 1991, SIGGRAPH.

[9]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[10]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[11]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[12]  Michael Garland,et al.  Multiresolution Modeling: Survey and Future Opportunities , 1999, Eurographics.

[13]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[14]  Hanan Samet,et al.  Applications of spatial data structures , 1989 .

[15]  J. Wilhelms,et al.  Topological considerations in isosurface generation extended abstract , 1990, SIGGRAPH 1990.

[16]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[17]  David P. Luebke,et al.  View-dependent simplification of arbitrary polygonal environments , 1997, SIGGRAPH.

[18]  Hanan Samet,et al.  Applications of spatial data structures - computer graphics, image processing, and GIS , 1990 .

[19]  Michel Dhome,et al.  Do We Really Need an Accurate Calibration Pattern to Achieve a Reliable Camera Calibration? , 1998, ECCV.

[20]  William J. Dally,et al.  Point Sample Rendering , 1998, Rendering Techniques.

[21]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[22]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[23]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[24]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[25]  Jake K. Aggarwal,et al.  Volume/surface octrees for the representation of three-dimensional objects , 1986, Comput. Vis. Graph. Image Process..

[26]  Richard Szeliski,et al.  Rapid octree construction from image sequences , 1993 .

[27]  Thomas S. Huang,et al.  A survey of construction and manipulation of octrees , 1988, Comput. Vis. Graph. Image Process..

[28]  Roni Yagel,et al.  Octree-based decimation of marching cubes surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[29]  Pere Brunet,et al.  Validity-Preserving Simplification of Very Complex Polyhedral Solids , 1999, EGVE.

[30]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[31]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[32]  Carlos Andújar,et al.  Automatic Generation of Multiresolution Boundary Representations , 1996, Comput. Graph. Forum.

[33]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[34]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[35]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[36]  Marc Levoy,et al.  The Use of Points as a Display Primitive , 2000 .

[37]  Thomas Ertl,et al.  Progressive Iso‐Surface Extraction from Hierarchical 3D Meshes , 1998, Comput. Graph. Forum.

[38]  Roberto Scopigno,et al.  A modified look-up table for implicit disambiguation of Marching Cubes , 1994, The Visual Computer.

[39]  Jihad El-Sana,et al.  Generalized View‐Dependent Simplification , 1999, Comput. Graph. Forum.

[40]  Marc Levoy,et al.  Streaming QSplat: a viewer for networked visualization of large, dense models , 2001, I3D '01.

[41]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[42]  Francis J. M. Schmitt,et al.  Progressive multilevel meshes from octree particles , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[43]  Núria Pla Garcia Recovering a Smooth Boundary Representation from an Edge Quadtree and from a Face Octree , 1994, Comput. Graph. Forum.

[44]  Jake K. Aggarwal,et al.  Identification of 3D objects from multiple silhouettes using quadtrees/octrees , 1985, Comput. Vis. Graph. Image Process..

[45]  Jane Wilhelms,et al.  Topological considerations in isosurface generation , 1994, TOGS.

[46]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[47]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[48]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.