Specialized Components of the Translational Machinery for Unnatural Amino Acid Mutagenesis: tRNAs, Aminoacyl-tRNA Synthetases, and Ribosomes

[1]  H. Suga,et al.  A ribozyme exclusively aminoacylates the 3'-hydroxyl group of the tRNA terminal adenosine. , 2001, Journal of the American Chemical Society.

[2]  S. Yokoyama,et al.  Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. , 2002, Nucleic acids research.

[3]  M. Selmer,et al.  Crystal Structures of the Ribosome in Complex with Release Factors RF1 and RF2 Bound to a Cognate Stop Codon , 2005, Cell.

[4]  Markus Berger,et al.  Efforts toward Expansion of the Genetic Alphabet: Optimization of Interbase Hydrophobic Interactions , 2000 .

[5]  Takuya Ueda,et al.  Cell-free translation reconstituted with purified components , 2001, Nature Biotechnology.

[6]  H. D. de Boer,et al.  Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[7]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[8]  G. Kreil,et al.  d-Amino Acids in Animal Peptides , 1997, Annual review of biochemistry.

[9]  P. Plateau,et al.  Metabolism of d-Aminoacyl-tRNAs inEscherichia coli and Saccharomyces cerevisiae Cells* , 2000, The Journal of Biological Chemistry.

[10]  Noriko Fujii,et al.  D-Amino Acids in Living Higher Organisms , 2002, Origins of life and evolution of the biosphere.

[11]  H. Drabkin,et al.  Initiator-Elongator Discrimination in Vertebrate tRNAs for Protein Synthesis , 1998, Molecular and Cellular Biology.

[12]  S. Yokoyama,et al.  Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA synthetase for genetic code expansion. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  T. Kohno,et al.  Externally Suppressible Proline Quadruplet CCCUU , 1972, Science.

[14]  P. Schimmel,et al.  A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase , 1990, Molecular and cellular biology.

[15]  D. Riddle,et al.  Suppressors of frameshift mutations in Salmonella typhimurium. , 1970, Journal of molecular biology.

[16]  P. Schultz,et al.  A genetically encoded metabolically stable analogue of phosphotyrosine in Escherichia coli. , 2007, ACS chemical biology.

[17]  T. Huber,et al.  Site-specific Incorporation of Keto Amino Acids into Functional G Protein-coupled Receptors Using Unnatural Amino Acid Mutagenesis* , 2008, Journal of Biological Chemistry.

[18]  Y. Motorin,et al.  Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure. , 1997, RNA.

[19]  Peter G. Schultz,et al.  Expanding the genetic code. , 2006 .

[20]  P. Brick,et al.  Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. , 1989, Journal of molecular biology.

[21]  S. Brenner,et al.  General Nature of the Genetic Code for Proteins , 1961, Nature.

[22]  Clement T Y Chan,et al.  Site-specific insertion of 3-aminotyrosine into subunit alpha2 of E. coli ribonucleotide reductase: direct evidence for involvement of Y730 and Y731 in radical propagation. , 2007, Journal of the American Chemical Society.

[23]  J. Chin,et al.  A network of orthogonal ribosome·mRNA pairs , 2005, Nature chemical biology.

[24]  P. Schultz,et al.  An archaebacteria-derived glutamyl-tRNA synthetase and tRNA pair for unnatural amino acid mutagenesis of proteins in Escherichia coli. , 2003, Nucleic acids research.

[25]  Andreas D. Baxevanis,et al.  The Molecular Biology Database Collection: 2002 update , 2002, Nucleic Acids Res..

[26]  P. Harrison,et al.  Evidence for Single Copies of Globin Genes in the Mouse Genome , 1972, Nature.

[27]  F. Romesberg,et al.  Rational Design of an Unnatural Base Pair with Increased Kinetic Selectivity , 2000 .

[28]  J. Eyzaguirre,et al.  Tyrosine activation and transfer to soluble ribonucleic acid. I. Purification and study of the enzyme of hog pancreas. , 1962, The Journal of biological chemistry.

[29]  S. Hecht,et al.  Construction of modified ribosomes for incorporation of D-amino acids into proteins. , 2006, Biochemistry.

[30]  U. RajBhandary,et al.  Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Agris Decoding the genome: a modified view. , 2004, Nucleic acids research.

[32]  J. Hopfield,et al.  Discrimination between D- and L-tyrosyl transfer ribonucleic acids in peptide chain elongation. , 1981, Biochemistry.

[33]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[34]  H. Murakami,et al.  A versatile tRNA aminoacylation catalyst based on RNA. , 2003, Chemistry & biology.

[35]  C. Guthrie,et al.  A functional requirement for modification of the wobble nucleotide in the anticodon of a T4 suppressor tRNA , 1976, Cell.

[36]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[37]  Richard Chamberlin,et al.  Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code , 1992, Nature.

[38]  J. Schaack,et al.  A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. , 2003, Chemistry & biology.

[39]  E. Ilegems,et al.  Downregulation of eRF1 by RNA interference increases mis-acylated tRNA suppression efficiency in human cells. , 2004, Protein engineering, design & selection : PEDS.

[40]  Floyd E. Romesberg,et al.  Efforts toward the Expansion of the Genetic Alphabet: Information Storage and Replication with Unnatural Hydrophobic Base Pairs , 2000 .

[41]  J. Miller,et al.  Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. , 1990, Journal of molecular biology.

[42]  M. Sisido,et al.  Five-base codons for incorporation of nonnatural amino acids into proteins. , 2001, Nucleic acids research.

[43]  Liang Xie,et al.  Import of amber and ochre suppressor tRNAs into mammalian cells: A general approach to site-specific insertion of amino acid analogues into proteins , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  U. RajBhandary,et al.  Initiator transfer RNAs , 1994, Journal of bacteriology.

[45]  R. Mehl,et al.  Site-specific incorporation of a (19)F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. , 2007, Journal of the American Chemical Society.

[46]  H. Drabkin,et al.  Amber suppression in mammalian cells dependent upon expression of an Escherichia coli aminoacyl-tRNA synthetase gene , 1996, Molecular and cellular biology.

[47]  J. Szostak,et al.  Enzymatic aminoacylation of tRNA with unnatural amino acids. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. U. Sprague Transcription of Eukaryotic tRNA Genes , 1995 .

[49]  A. E. Dahlberg,et al.  Spectinomycin resistance at site 1192 in 16S ribosomal RNA of E. coli: an analysis of three mutants. , 1987, Biochimie.

[50]  C. Yanofsky Mutations affecting tRNATrp and its charging and their effect on regulation of transcription termination at the attenuator of the tryptophan operon. , 1977, Journal of molecular biology.

[51]  U. RajBhandary,et al.  Saccharomyces cerevisiae cytoplasmic tyrosyl-tRNA synthetase gene. Isolation by complementation of a mutant Escherichia coli suppressor tRNA defective in aminoacylation and sequence analysis. , 1993, The Journal of biological chemistry.

[52]  Shigeyuki Yokoyama,et al.  An unnatural hydrophobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methylimidazo[(4,5)-b]pyridine. , 2003, Journal of the American Chemical Society.

[53]  J. Chin,et al.  Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion , 2007, Nature Biotechnology.

[54]  U. RajBhandary,et al.  Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. , 2004, Nucleic acids research.

[55]  G. Björk,et al.  tRNA anticodons with the modified nucleoside 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine distinguish between bases 3' of the codon. , 1991, Journal of molecular biology.

[56]  M. Ehrenberg,et al.  Termination of translation: interplay of mRNA, rRNAs and release factors? , 2003, The EMBO journal.

[57]  G. F. Short,et al.  Effects of release factor 1 on in vitro protein translation and the elaboration of proteins containing unnatural amino acids. , 1999, Biochemistry.

[58]  Hieronim Jakubowski,et al.  Alternative pathways for editing non-cognate amino acids by aminoacyl- tRNA synthetases , 1981, Nucleic Acids Res..

[59]  L. Isaksson,et al.  Emerging Understanding of Translation Termination , 1996, Cell.

[60]  P. Carbon,et al.  An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. , 2001, Nucleic acids research.

[61]  Dieter Söll,et al.  Trna: Structure, Biosynthesis, and Function , 1995 .

[62]  A. Pingoud,et al.  Aminoacyl transfer ribonucleic acid binding site of the bacterial elongation factor Tu. , 1980, Biochemistry.

[63]  E. Ilegems,et al.  Monitoring mis-acylated tRNA suppression efficiency in mammalian cells via EGFP fluorescence recovery. , 2002, Nucleic acids research.

[64]  H. Lester,et al.  Site-specific incorporation of unnatural amino acids into receptors expressed in Mammalian cells. , 2003, Chemistry & biology.

[65]  R. Buckingham,et al.  Codon context and protein synthesis: enhancements of the genetic code. , 1994, Biochimie.

[66]  S. Yokoyama,et al.  Unnatural base pairs for specific transcription , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. Sisido,et al.  Facile aminoacylation of pdCpA dinucleotide with a nonnatural amino acid in cationic micelle. , 2003, Chemical communications.

[68]  S. Hecht,et al.  Enhanced D-amino acid incorporation into protein by modified ribosomes. , 2003, Journal of the American Chemical Society.

[69]  Jack W. Szostak,et al.  An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides , 2007, PloS one.

[70]  L. Kisselev,et al.  Eukaryotic release factor 1 (eRF1) abolishes readthrough and competes with suppressor tRNAs at all three termination codons in messenger RNA. , 1997, Nucleic acids research.

[71]  Michael Yarus,et al.  Stop codon suppression via inhibition of eRF1 expression. , 2003, RNA.

[72]  Peter G. Schultz,et al.  A chemical toolkit for proteins — an expanded genetic code , 2006, Nature Reviews Molecular Cell Biology.

[73]  P G Schultz,et al.  A general method for site-specific incorporation of unnatural amino acids into proteins. , 1989, Science.

[74]  Hiroshi Murakami,et al.  A highly flexible tRNA acylation method for non-natural polypeptide synthesis , 2006, Nature Methods.

[75]  U. RajBhandary,et al.  Twenty-first aminoacyl-tRNA synthetase–suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. Hecht,et al.  Fluorescence resonance energy transfer between unnatural amino acids in a structurally modified dihydrofolate reductase. , 2002, Journal of the American Chemical Society.

[77]  M Yarus,et al.  Translational efficiency of transfer RNA's: uses of an extended anticodon. , 1982, Science.

[78]  S. Yokoyama,et al.  Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid , 2005, Nature Methods.

[79]  G. Björk Biosynthesis and Function of Modified Nucleosides , 1995 .

[80]  F. Crick On protein synthesis. , 1958, Symposia of the Society for Experimental Biology.

[81]  H. Suga,et al.  An in vitro evolved precursor tRNA with aminoacylation activity , 2001, The EMBO journal.

[82]  Paul F Agris,et al.  tRNA's wobble decoding of the genome: 40 years of modification. , 2007, Journal of molecular biology.

[83]  H. Lester,et al.  Unnatural amino acid mutagenesis in mapping ion channel function , 2003, Current Opinion in Neurobiology.

[84]  M. Sisido,et al.  Incorporation of Two Different Nonnatural Amino Acids Independently into a Single Protein through Extension of the Genetic Code , 1999 .

[85]  Erik A. Rodriguez,et al.  In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Daisuke Kiga,et al.  An engineered Escherichia coli tyrosyl–tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Måns Ehrenberg,et al.  Structure of the Escherichia coli ribosomal termination complex with release factor 2 , 2003, Nature.

[88]  A. Geballe,et al.  The effect of eukaryotic release factor depletion on translation termination in human cell lines. , 2004, Nucleic acids research.

[89]  Peter G Schultz,et al.  An Expanded Eukaryotic Genetic Code , 2003, Science.

[90]  Peter G Schultz,et al.  A genetically encoded photocaged amino acid. , 2004, Journal of the American Chemical Society.

[91]  Erik A. Rodriguez,et al.  Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 2: evaluating suppression efficiency. , 2007, RNA.

[92]  J. Yourno Externally suppressible +1 "glycine" frameshift: possible quadruplet isomers for glycine and proline. , 1972, Nature: New biology.

[93]  P. Plateau,et al.  Functional Characterization of thed-Tyr-tRNATyr Deacylase from Escherichia coli * , 1999, The Journal of Biological Chemistry.

[94]  Erik A. Rodriguez,et al.  Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 1: minimizing misacylation. , 2007, RNA.

[95]  Peter G Schultz,et al.  An expanded genetic code with a functional quadruplet codon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[96]  M. Sisido,et al.  Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system. , 2001, Biochemistry.

[97]  Neil J. Bonzagni,et al.  Aminoacyl-tRNA synthesis by a resin-immobilized ribozyme. , 2002, Journal of the American Chemical Society.

[98]  Floyd E. Romesberg,et al.  Efforts toward Expansion of the Genetic Alphabet: DNA Polymerase Recognition of a Highly Stable, Self-Pairing Hydrophobic Base , 1999 .

[99]  R. Calendar,et al.  The catalytic properties of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis. , 1966, Biochemistry.

[100]  L. Bossi,et al.  The influence of codon context on genetic code translation , 1980, Nature.

[101]  S. Hecht,et al.  T4 RNA ligase mediated preparation of novel "chemically misacylated" tRNAPheS. , 1984, Biochemistry.

[102]  M. Santer,et al.  A single base change in the Shine-Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[103]  M. Sisido,et al.  Incorporation of Nonnatural Amino Acids into Streptavidin through In Vitro Frame-Shift Suppression , 1996 .

[104]  Paul Schimmel,et al.  Incorporation of nonnatural amino acids into proteins. , 2004, Annual review of biochemistry.

[105]  N. Davidson,et al.  Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. , 1995, Science.

[106]  P. Schultz,et al.  Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression. , 2003, Biochemistry.

[107]  M. Yarus,et al.  The translational efficiency of tRNA is a property of the anticodon arm. , 1986, The Journal of biological chemistry.

[108]  J. Noel,et al.  Genetically encoding unnatural amino acids for cellular and neuronal studies , 2007, Nature Neuroscience.