On the second Lyapunov exponent of some multidimensional continued fraction algorithms

We study the strong convergence of certain multidimensional continued fraction algorithms. In particular, in the two-dimensional case, we prove that the second Lyapunov exponent of Selmer's algorithm is negative and bound it away from zero. Moreover, we give heuristic results on several other continued fraction algorithms. Our results indicate that all classical multidimensional continued fraction algorithms cease to be strongly convergent for high dimensions. The only exception seems to be the Arnoux-Rauzy algorithm which, however, is defined only on a set of measure zero.

[1]  C. Kraaikamp,et al.  Erratum to: “The convergence of the generalised Selmer algorithm” , 2019, Israel Journal of Mathematics.

[2]  C. Fougeron,et al.  Simplicity of spectra for certain multidimensional continued fraction algorithms , 2019, Monatshefte für Mathematik.

[3]  K. Allegaert,et al.  (Preprint) , 2018 .

[4]  Brigitte Vallée,et al.  The Brun gcd algorithm in high dimensions is almost always subtractive , 2018, J. Symb. Comput..

[5]  J. Cassaigne,et al.  A Set of Sequences of Complexity 2n+1 2 n + 1 , 2017, WORDS.

[6]  Sébastien Labbé,et al.  3-dimensional Continued Fraction Algorithms Cheat Sheets , 2015, ArXiv.

[7]  C. Kraaikamp,et al.  The convergence of the generalised Selmer algorithm , 2015 .

[8]  P. Arnoux,et al.  On some symmetric multidimensional continued fraction algorithms , 2015, Ergodic Theory and Dynamical Systems.

[9]  A. Avila,et al.  Some Monoids of Pisot Matrices , 2015, New Trends in One-Dimensional Dynamics.

[10]  A. Avila,et al.  On the Hausdorff dimension of the Rauzy gasket , 2013, 1311.5361.

[11]  A. Nogueira,et al.  Ergodic properties of triangle partitions , 2009 .

[12]  K. Nakaishi EXPONENTIALLY STRONG CONVERGENCE OF NON-CLASSICAL MULTIDIMENSIONAL CONTINUED FRACTION ALGORITHMS , 2002 .

[13]  D. M. Hardcastle The Three-Dimensional Gauss Algorithm Is Strongly Convergent Almost Everywhere , 2002, Exp. Math..

[14]  B. R. Schratzberger,et al.  The Quality of Approximation of Brun’s Algorithm in Three Dimensions , 2001 .

[15]  D. M. Hardcastle,et al.  The d-Dimensional Gauss Transformation: Strong Convergence and Lyapunov Exponents , 2000, Exp. Math..

[16]  D. M. Hardcastle,et al.  On almost everywhere strong convergence of multi-dimensional continued fraction algorithms , 2000, Ergodic Theory and Dynamical Systems.

[17]  Ronald Meester,et al.  A simple proof of the exponential convergence of the modified Jacobi–Perron algorithm , 1999, Ergodic Theory and Dynamical Systems.

[18]  T. Garrity On Periodic Sequences for Algebraic Numbers , 1999, math/9906016.

[19]  M. S. Keane,et al.  On almost everywhere exponential convergence of the modified Jacobi-Perron algorithm: a corrected proof , 1996, Ergodic Theory and Dynamical Systems.

[20]  V. Baladi,et al.  Lyapunov exponents for non-classical multidimensional continued fraction algorithms , 1996 .

[21]  Jeffrey C. Lagarias,et al.  The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms , 1993 .

[22]  M. Keane,et al.  Almost everywhere exponential convergence of the modified Jacobi—Perron algorithm , 1993, Ergodic Theory and Dynamical Systems.

[23]  P. R. Baldwin,et al.  A Convergence exponent for multidimensional continued-fraction algorithms , 1992 .

[24]  P. Baldwin A multidimensional continued fraction and some of its statistical properties , 1992 .

[25]  David Goldberg,et al.  What every computer scientist should know about floating-point arithmetic , 1991, CSUR.

[26]  George R. Sell,et al.  Ergodic properties of linear dynamical systems , 1987 .

[27]  Fritz Schweiger,et al.  The Metrical Theory of Jacobi-Perron Algorithm , 1973 .

[28]  Leon Bernstein,et al.  The Jacobi-Perron Algorithm: Its Theory and Application , 1971 .

[29]  H. D. Ursell,et al.  Continued Fractions in Several Dimensions , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  Pierre Arnoux,et al.  The Rauzy Gasket , 2013 .

[31]  J. Christopher Kops,et al.  Selmer's Multiplicative Algorithm , 2011, Integers.

[32]  Kentaro Nakaishi,et al.  Strong convergence of additive Multidimensional Continued Fraction algorithms , 2006 .

[33]  F. Schweiger Ergodic and Diophantine properties of algorithms of Selmer type , 2004 .

[34]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[35]  Anne Broise-Alamichel,et al.  Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée , 2001 .

[36]  Fritz Schweiger,et al.  Multidimensional continued fractions , 2000 .