Modelling how incorporation of divalent cations affects calcite wettability–implications for biomineralisation and oil recovery

[1]  Kenneth S. Pitzer,et al.  Activity Coefficients in Electrolyte Solutions , 2017 .

[2]  S. Gíslason,et al.  Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano: A carbon capture and storage analogue , 2014 .

[3]  Caetano R. Miranda,et al.  Modeling Acid Oil Component Interactions with Carbonate Reservoirs: A First-Principles View on Low Salinity Recovery Mechanisms , 2014 .

[4]  M. Andersson,et al.  First-Principles Prediction of Liquid/Liquid Interfacial Tension. , 2014, Journal of chemical theory and computation.

[5]  M. Andersson,et al.  Predicting the pKa and stability of organic acids and bases at an oil-water interface. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[6]  M. Andersson,et al.  Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[7]  M. Andersson,et al.  Surface Tension Alteration on Calcite, Induced by Ion Substitution , 2014 .

[8]  M. Andersson,et al.  Energies of the adsorption of functional groups to calcium carbonate polymorphs: the importance of -OH and -COOH groups. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[9]  J. Schott,et al.  Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite , 2013 .

[10]  Laura M. Hamm,et al.  Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies , 2013, Proceedings of the National Academy of Sciences.

[11]  Martin Andersson,et al.  How acidic is water on calcite , 2012 .

[12]  W. Reckien,et al.  System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  Kishore K. Mohanty,et al.  Wettability Altering Secondary Oil Recovery in Carbonate Rocks , 2011 .

[14]  M. Andersson,et al.  Sensitivity Analysis of Cluster Models for Calculating Adsorption Energies for Organic Molecules on Mineral Surfaces , 2011 .

[15]  K. Mohanty,et al.  Wettability Alteration Mechanism for Oil Recovery from Fractured Carbonate Rocks , 2011 .

[16]  P. Tongying,et al.  A performance study of density functional theory with empirical dispersion corrections and spin-component scaled second-order Møller−Plesset perturbation theory on adsorbate–zeolite interactions , 2010 .

[17]  E. Oelkers,et al.  Magnesite growth rates as a function of temperature and saturation state , 2009 .

[18]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  S. Stipp,et al.  Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution , 2009, Proceedings of the National Academy of Sciences.

[20]  S. Stipp,et al.  Controlling Biomineralization: The Effect of Solution Composition on Coccolith Polysaccharide Functionality , 2009 .

[21]  T. Austad,et al.  Injection of seawater and mixtures with produced water into North Sea chalk formation: Impact of fluid–rock interactions on wettability and scale formation , 2008 .

[22]  L. Lakshtanov,et al.  Experimental study of nickel(II) interaction with calcite: Adsorption and coprecipitation , 2007 .

[23]  T. Austad,et al.  Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42− , 2007 .

[24]  Tianguang Fan,et al.  CRUDE OIL/BRINE INTERFACIAL TENSIONS , 2007 .

[25]  D. Gledhill,et al.  Calcite dissolution kinetics in Na–Ca–Mg–Cl brines , 2006 .

[26]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[27]  Thomas S. Hofer,et al.  Coordination and ligand exchange dynamics of solvated metal ions , 2005 .

[28]  S. Stipp,et al.  Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function , 2004 .

[29]  U. Riebesell,et al.  Effect of trace metal availability on coccolithophorid calcification , 2004, Nature.

[30]  F. Millero,et al.  Solubility of Rhodochrosite (MnCO3) in NaCl Solutions , 2003 .

[31]  A. Klamt,et al.  Fast solvent screening via quantum chemistry: COSMO‐RS approach , 2002 .

[32]  L. Helm,et al.  Water exchange on metal ions: experiments and simulations , 1999 .

[33]  Mark E. Tuckerman,et al.  A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters , 1999 .

[34]  P. Dove,et al.  Thermodynamics of calcite growth: baseline for understanding biomineral formation , 1998, Science.

[35]  A. Klamt,et al.  Refinement and Parametrization of COSMO-RS , 1998 .

[36]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[37]  R. Krupp,et al.  Hydrothermal solubility of rhodochrosite, Mn (II) speciation, and equilibrium constants , 1996 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  G. C. Frye,et al.  Adsorption of organic compounds on carbonate minerals: 2. Extraction of carboxylic acids from recent and ancient carbonates , 1993 .

[40]  E. Shock,et al.  Petroleum, oil field waters, and authigenic mineral assemblages Are they in metastable equilibrium in hydrocarbon reservoirs☆ , 1993 .

[41]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[42]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[43]  W. Stumm,et al.  Redox potentials and redox reactions in deep groundwater systems , 1992 .

[44]  G. A. Parks,et al.  Cd2+ uptake by calcite, solid-state diffusion, and the formation of solid-solution: Interface processes observed with near-surface sensitive techniques (XPS, LEED, and AES) , 1992 .

[45]  Stephen Mann,et al.  Crystal assembly and phylogenetic evolution in heterococcoliths , 1992, Nature.

[46]  C. E. Cowan,et al.  Sorption of divalent metals on calcite , 1991 .

[47]  L. M. Walter,et al.  Iron and manganese incorporation into calcite: Effects of growth kinetics, temperature and solution chemistry , 1990 .

[48]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[49]  J. J. Morgan,et al.  Manganese(II) oxidation kinetics on metal oxide surfaces , 1989 .

[50]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[51]  Stephen Mann,et al.  Molecular recognition in biomineralization , 1988, Nature.

[52]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[53]  M. P. Eastman,et al.  The experimental partitioning of Ba2+ into calcite , 1984 .

[54]  J. Morse,et al.  The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition , 1983 .

[55]  Robert B. Lorens,et al.  Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate , 1981 .

[56]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[57]  Luke L. Y. Chang,et al.  Sub solidus phase relations in the system calcium carbonate-cadmium carbonate , 1971 .

[58]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[59]  A. J. Ellis The solubility of calcite in sodium chloride solutions at high temperatures , 1963 .

[60]  Frank Moss,et al.  Experiments and simulations , 2009 .

[61]  Henriksen,et al.  Tailoring calcite: Nanoscale AFM of coccolith biocrystals , 2007 .

[62]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[63]  Yizhak Marcus,et al.  Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K , 1991 .

[64]  David L. Parkhurst,et al.  A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines , 1988 .

[65]  Kenneth S. Pitzer,et al.  Thermodynamic Properties of Aqueous Sodium Chloride Solutions , 1984 .

[66]  Y. Kitano,et al.  Abnormal behaviors of copper (II) and zinc ions in parent solution at the early stage of calcite formation , 1980 .

[67]  John Burgess,et al.  Metal Ions in Solution , 1978 .

[68]  J. J. Morgan,et al.  Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters , 1970 .