A 2 pJ/bit pulsed ILO UWB transmitter at 60 GHz in 65-nm CMOS-SOI

The paper describes a 2 pJ/bit transmitter with 1.5 Gbps data rate with Pulsed Injected Local Oscillator (p-ILO) and 0 dBm peak output power that 0.16 mm2 active area in 65-nm CMOS-SOI. Input digital pulses modulate the oscillator at 60 GHz from On to Off state. The occupation bandwidth is 7 GHz for a 300 ps modulating pulses. This millimeter wave output frequency oscillation is locked to one of the numerous harmonic components of the pulse generator synthesized around 60 GHz, which permits to obtain a stable pulse to pulse phase condition. Thanks to this very non linear injection using pulses switching, a super high order N harmonic injection is obtained. With a 500 MHz input pulse data rate (N = 60 GHz=500 MHz = 120) the phase noise is −92 dBc/Hz at 100 KHz which is very close to the theorical 20log(N) dB increasing phase noise. The peak conversion efficiency is more than 18 % and the maximum peak output power is 7 dBm. Output pulse waveform and phases are coherent with input modulated pulses, which make this transmitter suitable for Automotive Radar, Giga bit WLAN, Wireless Sensor Networks and localization.

[1]  Tong Wang,et al.  22-29GHz Ultra-Wideband CMOS Pulse Generator for Collision Avoidance Short Range Vehicular Radar Sensors , 2007, 2007 Asia and South Pacific Design Automation Conference.

[2]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[3]  Jri Lee,et al.  A 75-GHz Phase-Locked Loop in 90-nm CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[4]  F. Danneville,et al.  UWB transmitter in BiCMOS SiGe 0.13 μm technology for 60 GHz WLAN communication , 2007, 2007 IEEE International Conference on Ultra-Wideband.

[5]  Ian Oppermann,et al.  UWB Theory and Applications: Oppermann/UWB: Theory and Applications , 2005 .

[6]  Minoru Fujishima,et al.  60 GHz CMOS pulse generator , 2007 .

[7]  Christoph Scheytt,et al.  Asymmetric dual-band UWB / 60 GHz demonstrator , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[8]  M. Vossiek,et al.  The Switched Injection-Locked Oscillator: A Novel Versatile Concept for Wireless Transponder and Localization Systems , 2008, IEEE Transactions on Microwave Theory and Techniques.

[9]  Jeng-Han Tsai,et al.  MMICs in the millimeter-wave regime , 2009 .

[10]  Seok-Kyun Han,et al.  Energy-Efficient Low-Complexity CMOS Pulse Generator for Multiband UWB Impulse Radio , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Ian Oppermann,et al.  UWB theory and applications , 2004 .

[12]  A. Siligaris,et al.  CPW and discontinuities modeling for circuit design up to 110 GHz in SOI CMOS technology , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[13]  Yanping Ding,et al.  A 50-GHz Phase-Locked Loop in 0.13-$\mu$ m CMOS , 2007, IEEE Journal of Solid-State Circuits.

[14]  A. Siligaris,et al.  130-nm partially depleted SOI MOSFET nonlinear model including the kink effect for linearity properties investigation , 2005, IEEE Transactions on Electron Devices.

[15]  L. Clavier,et al.  Transposition of a baseband UWB signal at 60 GHz for high data rate indoor WLAN , 2005, IEEE Microwave and Wireless Components Letters.

[16]  Nicolas Deparis,et al.  UWB in Millimeter Wave Band With Pulsed ILO , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[17]  Shen-Iuan Liu,et al.  A 58-to-60.4GHz Frequency Synthesizer in 90nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.