The solution structure of the C-terminal Ig-like domain of the bacteriophage λ tail tube protein.

[1]  A. Davidson,et al.  The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system , 2009, Proceedings of the National Academy of Sciences.

[2]  James S Fraser,et al.  Immunoglobulin-like domains on bacteriophage: weapons of modest damage? , 2007, Current opinion in microbiology.

[3]  J. Conway,et al.  Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. , 2006, Journal of molecular biology.

[4]  Zhou Yu,et al.  Ig-like domains on bacteriophages: a tale of promiscuity and deceit. , 2006, Journal of molecular biology.

[5]  L. Kay,et al.  Assessment of the Effects of Increased Relaxation Dispersion Data on the Extraction of 3-site Exchange Parameters Characterizing the Unfolding of an SH3 Domain , 2006, Journal of biomolecular NMR.

[6]  P. Neudecker,et al.  Multiple-site exchange in proteins studied with a suite of six NMR relaxation dispersion experiments: an application to the folding of a Fyn SH3 domain mutant. , 2005, Journal of the American Chemical Society.

[7]  Rieko Ishima,et al.  Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters , 2005, Journal of biomolecular NMR.

[8]  M. Rossmann,et al.  Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of phi29. , 2005, Molecular cell.

[9]  J. Theriot,et al.  Complex spatial distribution and dynamics of an abundant Escherichia coli outer membrane protein, LamB , 2004, Molecular microbiology.

[10]  C. Dobson,et al.  Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR , 2004, Nature.

[11]  Michael G Rossmann,et al.  Molecular architecture of the prolate head of bacteriophage T4. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Suárez,et al.  A −1 Ribosomal Frameshift in the Transcript That Encodes the Major Head Protein of Bacteriophage A2 Mediates Biosynthesis of a Second Essential Component of the Capsid , 2004, Journal of bacteriology.

[13]  James A. Cuff,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[14]  Adam Godzik,et al.  Flexible structure alignment by chaining aligned fragment pairs allowing twists , 2003, ECCB.

[15]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[16]  L. Kay,et al.  Multidimensional NMR Methods for Protein Structure Determination , 2001, IUBMB life.

[17]  M. Rossmann,et al.  Combining electron microscopic with x-ray crystallographic structures. , 2001, Journal of structural biology.

[18]  Martin Billeter,et al.  MUNIN: Application of three-way decomposition to the analysis of heteronuclear NMR relaxation data** , 2001, Journal of biomolecular NMR.

[19]  L. Kay,et al.  Slow dynamics in folded and unfolded states of an SH3 domain. , 2001, Journal of the American Chemical Society.

[20]  M. Billeter,et al.  MUNIN: A new approach to multi-dimensional NMR spectra interpretation , 2001, Journal of biomolecular NMR.

[21]  A. Poupon,et al.  The immunoglobulin fold family: sequence analysis and 3D structure comparisons. , 1999, Protein engineering.

[22]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[23]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[24]  A. Palmer,et al.  A Relaxation-Compensated Carr−Purcell−Meiboom−Gill Sequence for Characterizing Chemical Exchange by NMR Spectroscopy , 1999 .

[25]  J. Mornon,et al.  The immunoglobulin superfamily: An insight on its tissular, species, and functional diversity , 1998, Journal of Molecular Evolution.

[26]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[27]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[28]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[29]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[30]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[31]  P Bork,et al.  The immunoglobulin fold. Structural classification, sequence patterns and common core. , 1994, Journal of molecular biology.

[32]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[33]  C Chothia,et al.  Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. , 1994, Journal of molecular biology.

[34]  L. Kay,et al.  Two-dimensional NMR experiments for correlating carbon-13.beta. and proton.delta./.epsilon. chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings , 1993 .

[35]  J. P. Condreay,et al.  Nucleotide sequence and complementation studies of the gene 10 region of bacteriophage T3. , 1989, Journal of molecular biology.

[36]  E. Amann,et al.  Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. , 1988, Gene.

[37]  G. Ihler,et al.  Proteinase sensitivity of bacteriophage lambda tail proteins gpJ and pH in complexes with the lambda receptor , 1984, Journal of bacteriology.

[38]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[39]  I. Katsura Structure and function of the major tail protein of bacteriophage lambda. Mutants having small major tail protein molecules in their virion. , 1981, Journal of molecular biology.

[40]  H. Mcconnell Reaction Rates by Nuclear Magnetic Resonance , 1958 .

[41]  P. Güntert Automated NMR structure calculation with CYANA. , 2004, Methods in molecular biology.

[42]  Bruce A Johnson,et al.  Using NMRView to visualize and analyze the NMR spectra of macromolecules. , 2004, Methods in molecular biology.

[43]  S. Eddy,et al.  A Member of the Immunoglobulin Superfamily in Bacteriophage T4 , 2004, Virus Genes.

[44]  William H. Press,et al.  Numerical recipes in C , 2002 .

[45]  C D Kroenke,et al.  Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. , 2001, Methods in enzymology.

[46]  L. Kay,et al.  Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. , 1995, Progress in biophysics and molecular biology.