Polyhedral Results for Some Constrained Arc-Routing Problems

Vehicle Routing Problems (VRPs) arise when routes must be devised for one or more vehicle(s) such that certain standards of efficiency are met and each route obeys one or more given restriction(s). VRPs are complex combinatorial optimisation problems and sophisticated algorithms are required in order to solve them. In this thesis, four particular VRPs are considered. All four are Arc Routing Problems, in which the vehicles are required to traverse certain edges (roads) of a network rather than visit certain vertices (customers). For each problem, an integer programming formulation is given and the convex hull of feasible solutions is studied to yield strong valid inequalities. For two of the problems, detailed optimisation algorithms are presented and tested.

[1]  J. Araque Lots of combs of different sizes for vehicle routing , 1990 .

[2]  Robert Carr,et al.  Separating Clique Trees and Bipartition Inequalities Having a Fixed Number of Handles and Teeth in Polynomial Time , 1997, Math. Oper. Res..

[3]  Adam N. Letchford New inequalities for the General Routing Problem , 1997 .

[4]  Gilbert Laporte,et al.  Routing problems: A bibliography , 1995, Ann. Oper. Res..

[5]  G. Reinelt,et al.  Combinatorial optimization and small polytopes , 1996 .

[6]  Robert Carr Separating over Classes of TSP Inequalities Defined by 0 Node-Lifting in Polynominal Time , 1996, IPCO.

[7]  Yves Nobert,et al.  An optimal algorithm for the mixed Chinese postman problem , 1996, Networks.

[8]  George L. Nemhauser,et al.  Functional description of MINTO : a mixed integer optimizer , 1991 .

[9]  Thomas L. Magnanti,et al.  Capacitated trees, capacitated routing, and associated polyhedra , 1990 .

[10]  Gérard Cornuéjols,et al.  The traveling salesman problem on a graph and some related integer polyhedra , 1985, Math. Program..

[11]  Denis Naddef Handles and Teeth in the Symmetric Traveling Salesman Problems , 1990, Polyhedral Combinatorics.

[12]  Martin Grötschel,et al.  Geometric Algorithms and Combinatorial Optimization , 1988, Algorithms and Combinatorics.

[13]  Eugene L. Lawler,et al.  The travelling salesman problem (A guided tour of combinatorial optimisation ), edited by E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys. Pp 465. £39·95. 1985. ISBN 0-471-90413-9 (Wiley) , 1986, The Mathematical Gazette.

[14]  Marshall L. Fisher,et al.  A generalized assignment heuristic for vehicle routing , 1981, Networks.

[15]  B. Fleischmann A cutting plane procedure for the travelling salesman problem on road networks , 1985 .

[16]  Á. Corberán,et al.  A polyhedral approach to the rural postman problem , 1994 .

[17]  Richard W. Eglese,et al.  An Interactive Algorithm for Vehicle Routeing for Winter — Gritting , 1996 .

[18]  K E Nygard,et al.  GENERALIZED ASSIGNMENT METHODS FOR THE DEADLINE VEHICLE ROUTING PROBLEM. VEHICLE ROUTING: METHODS AND STUDIES. STUDIES IN MANAGEMENT SCIENCE AND SYSTEMS - VOLUME 16 , 1988 .

[19]  Gerhard Reinelt,et al.  The travelling salesman problem , 1995 .

[20]  Egon Balas,et al.  Facets of the knapsack polytope , 1975, Math. Program..

[21]  Adam N. Letchford,et al.  The rural postman problem with deadline classes , 1998, Eur. J. Oper. Res..

[22]  George S. Lueker,et al.  Bin packing with items uniformly distributed over intervals [a,b] , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[23]  Denis Naddef The Binested Inequalities for the Symmetric Traveling Salesman Polytope , 1992, Math. Oper. Res..

[24]  Eitan Zemel,et al.  Easily Computable Facets of the Knapsack Polytope , 1989, Math. Oper. Res..

[25]  Terence C. Fogarty,et al.  Optimisation of a 532-City Symmetric Travelling Salesman Problem with a parallel genetic algorithm , 1994 .

[26]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[27]  Ellis L. Johnson,et al.  A note of the knapsack problem with special ordered sets , 1981, Oper. Res. Lett..

[28]  Martin Grötschel,et al.  On the symmetric travelling salesman problem I: Inequalities , 1979, Math. Program..

[29]  Richard W. Eglese,et al.  Efficient Routeing for Winter Gritting , 1992 .

[30]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[31]  A. Schrijver Polyhedral combinatorics , 1996 .

[32]  Éva Tardos,et al.  Separating Maximally Violated Comb Inequalities in Planar Graphs , 1996, IPCO.

[33]  William R. Pulleyblank,et al.  Clique Tree Inequalities and the Symmetric Travelling Salesman Problem , 1986, Math. Oper. Res..

[34]  Mary P. Harper,et al.  A tight lower bound for optimal bin packing , 1995, Oper. Res. Lett..

[35]  Moshe Dror,et al.  Postman tour on a graph with precedence relation on arcs , 1987, Networks.

[36]  Toshihide Ibaraki,et al.  Implementing an efficient minimum capacity cut algorithm , 1994, Math. Program..

[37]  Bruce L. Golden,et al.  Capacitated arc routing problems , 1981, Networks.

[38]  Donald L. Miller A Matching Based Exact Algorithm for Capacitated Vehicle Routing Problems , 1995, INFORMS J. Comput..

[39]  George L. Nemhauser,et al.  Lifted cover facets of the 0-1 knapsack polytope with GUB constraints , 1994, Oper. Res. Lett..

[40]  Gilbert Laporte,et al.  Optimal Routing under Capacity and Distance Restrictions , 1985, Oper. Res..