Use of potential functions in 3D rendering of fractal images from complex functions
暂无分享,去创建一个
Sung Yong Shin | Hyoung Seok Kim | Hong Oh Kim | Young Bong Kim | Young Bong Kim | Hong Oh Kim | Sung-yong Shin | Hyoung Seok Kim
[1] Clifford A. Reiter,et al. Chaos and Newton's method on systems , 1990, Comput. Graph..
[2] Dennis Sullivan,et al. On the iteration of a rational function: Computer experiments with Newton's method , 1983 .
[3] Uday G. Gujar,et al. Fractal images from z <- za + c in the complex c-plane , 1988 .
[4] C. Sparrow. The Fractal Geometry of Nature , 1984 .
[5] Laurie Hodges,et al. Construction of fractal objects with iterated function systems , 1985, SIGGRAPH.
[6] Christian Bouville. Bounding ellipsoids for ray-fractal intersection , 1985, SIGGRAPH '85.
[7] Peter H. Richter,et al. The Beauty of Fractals , 1988, 1988.
[8] Alan Norton,et al. Generation and display of geometric fractals in 3-D , 1982, SIGGRAPH.
[9] Sung-Yong Shin,et al. Animation of a Blooming Flower Using a Family of Complex Functions , 1993 .
[10] F. Kenton Musgrave,et al. The synthesis and rendering of eroded fractal terrains , 1989, SIGGRAPH.
[11] Heinz-Otto Peitgen,et al. The science of fractal images , 2011 .
[12] Uday G. Gujar,et al. Fractal images from z <-- z alpha + c in the complex z-plane , 1992, Comput. Graph..
[13] R. Devaney. An Introduction to Chaotic Dynamical Systems , 1990 .
[14] Donald S. Fussell,et al. Computer rendering of stochastic models , 1998 .
[15] John C. Hart,et al. Efficient antialiased rendering of 3-D linear fractals , 1991, SIGGRAPH.
[16] Hk Kim,et al. Verification of Visual Characteristics of Complex Functions fα,c(z) = zα + c , 1993 .
[17] Bodil Branner,et al. The iteration of cubic polynomials Part I: The global topology of parameter space , 1988 .
[18] P. Blanchard. Complex analytic dynamics on the Riemann sphere , 1984 .
[19] Uday G. Gujar,et al. Fractals from z <-- z alpha + c in the complex c-plane , 1991, Comput. Graph..
[20] Hong Oh Kim,et al. Iterations, Denjoy-Wolff Points and Ergodic Properties of Point-Mass Singular Inner Functions , 1993 .
[21] Dietmar Saupe,et al. Chaos and fractals - new frontiers of science , 1992 .
[22] Hartmut Jürgens,et al. Chaos and Fractals: New Frontiers of Science , 1992 .
[23] John C. Hart,et al. Ray tracing deterministic 3-D fractals , 1989, SIGGRAPH.
[24] V. Bhavsar,et al. Julia sets of z←z ∞ +c , 1990 .
[25] Sung Yong Shin,et al. Image generation by Blaschke products in the unit disk , 1993, Comput. Graph..
[26] Ian D. Entwistle,et al. Julia set art and fractals in the complex plane , 1989, Comput. Graph..
[27] Alan Norton,et al. Julia sets in the quaternions , 1989, Comput. Graph..
[28] A. Klebanoff. π IN THE MANDELBROT SET , 2001 .
[29] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[30] Uday G. Gujar,et al. Analysis of z-plane fractal images from z <-- z alpha + c for alpha < 0 , 1993, Comput. Graph..