Use of potential functions in 3D rendering of fractal images from complex functions

AbstractComputer graphics is important in developing fractal images visualizing the Mandelbrot and Julia sets from a complex function. Computer rendering is a central tool for obtaining nice fractal images. We render 3D objects with the height of each complex point of a fractal image considering the diverging speed of its orbit. A potential function helps approximate this speed. We propose a new method for estimating the normal vector at the surface points given by a potential function. We consider two families of functions that exhibit interesting fractal images in a bounded region: a power function,fα, c(z)=zα+c, where α is a real number, and the Newton form of an equation, $$\exp \left( { - \alpha \frac{{\zeta + z}}{{\zeta - z}}} \right) - 1 = 0$$ where ¦ζ¦=1 and α>0.

[1]  Clifford A. Reiter,et al.  Chaos and Newton's method on systems , 1990, Comput. Graph..

[2]  Dennis Sullivan,et al.  On the iteration of a rational function: Computer experiments with Newton's method , 1983 .

[3]  Uday G. Gujar,et al.  Fractal images from z <- za + c in the complex c-plane , 1988 .

[4]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[5]  Laurie Hodges,et al.  Construction of fractal objects with iterated function systems , 1985, SIGGRAPH.

[6]  Christian Bouville Bounding ellipsoids for ray-fractal intersection , 1985, SIGGRAPH '85.

[7]  Peter H. Richter,et al.  The Beauty of Fractals , 1988, 1988.

[8]  Alan Norton,et al.  Generation and display of geometric fractals in 3-D , 1982, SIGGRAPH.

[9]  Sung-Yong Shin,et al.  Animation of a Blooming Flower Using a Family of Complex Functions , 1993 .

[10]  F. Kenton Musgrave,et al.  The synthesis and rendering of eroded fractal terrains , 1989, SIGGRAPH.

[11]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[12]  Uday G. Gujar,et al.  Fractal images from z <-- z alpha + c in the complex z-plane , 1992, Comput. Graph..

[13]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[14]  Donald S. Fussell,et al.  Computer rendering of stochastic models , 1998 .

[15]  John C. Hart,et al.  Efficient antialiased rendering of 3-D linear fractals , 1991, SIGGRAPH.

[16]  Hk Kim,et al.  Verification of Visual Characteristics of Complex Functions fα,c(z) = zα + c , 1993 .

[17]  Bodil Branner,et al.  The iteration of cubic polynomials Part I: The global topology of parameter space , 1988 .

[18]  P. Blanchard Complex analytic dynamics on the Riemann sphere , 1984 .

[19]  Uday G. Gujar,et al.  Fractals from z <-- z alpha + c in the complex c-plane , 1991, Comput. Graph..

[20]  Hong Oh Kim,et al.  Iterations, Denjoy-Wolff Points and Ergodic Properties of Point-Mass Singular Inner Functions , 1993 .

[21]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[22]  Hartmut Jürgens,et al.  Chaos and Fractals: New Frontiers of Science , 1992 .

[23]  John C. Hart,et al.  Ray tracing deterministic 3-D fractals , 1989, SIGGRAPH.

[24]  V. Bhavsar,et al.  Julia sets of z←z ∞ +c , 1990 .

[25]  Sung Yong Shin,et al.  Image generation by Blaschke products in the unit disk , 1993, Comput. Graph..

[26]  Ian D. Entwistle,et al.  Julia set art and fractals in the complex plane , 1989, Comput. Graph..

[27]  Alan Norton,et al.  Julia sets in the quaternions , 1989, Comput. Graph..

[28]  A. Klebanoff π IN THE MANDELBROT SET , 2001 .

[29]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[30]  Uday G. Gujar,et al.  Analysis of z-plane fractal images from z <-- z alpha + c for alpha < 0 , 1993, Comput. Graph..