Quantum Szilard Engine with Attractively Interacting Bosons.

We show that a quantum Szilard engine containing many bosons with attractive interactions enhances the conversion between information and work. Using an ab initio approach to the full quantum-mechanical many-body problem, we find that the average work output increases significantly for a larger number of bosons. The highest overshoot occurs at a finite temperature, demonstrating how thermal and quantum effects conspire to enhance the conversion between information and work. The predicted effects occur over a broad range of interaction strengths and temperatures.

[1]  Ronnie Kosloff,et al.  Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures , 2015 .

[2]  Martin Plesch,et al.  Maxwell's Daemon: Information versus Particle Statistics , 2014, Scientific reports.

[3]  Bernhard K. Meister,et al.  Unusual quantum states: non–locality, entropy, Maxwell's demon and fractals , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[5]  I. S. Oliveira,et al.  Experimental Rectification of Entropy Production by Maxwell's Demon in a Quantum System. , 2016, Physical review letters.

[6]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[7]  M. Girardeau,et al.  Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension , 1960 .

[8]  E. Lutz,et al.  Information: From Maxwell’s demon to Landauer’s eraser , 2015 .

[9]  S. Liang,et al.  Quantum Szilard engines with arbitrary spin. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Sang Wook Kim,et al.  Optimal work of the quantum Szilard engine under isothermal processes with inevitable irreversibility , 2016 .

[11]  A. Georgescu,et al.  53 , 2015, Tao te Ching.

[12]  A. Rex,et al.  Maxwell's demon 2: entropy, classical and quantum information, computing , 2002 .

[13]  M. Scully,et al.  Frontiers of nonequilibrium statistical physics , 1986 .

[14]  Juan Jaramillo,et al.  Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity , 2016, Entropy.

[15]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[16]  V. Sørdal,et al.  Influence of measurement error on Maxwell's demon. , 2017, Physical review. E.

[17]  J. Koski,et al.  On-Chip Maxwell's Demon as an Information-Powered Refrigerator. , 2015, Physical review letters.

[18]  G. Long,et al.  Parity effect and phase transitions in quantum Szilard engines. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Dmitri Petrov,et al.  Universal features in the energetics of symmetry breaking , 2013, Nature Physics.

[20]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[21]  C Y Cai,et al.  Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell's demon. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Martin Plesch,et al.  Maxwell's Daemon: Information versus Particle Statistics , 2012, Scientific Reports.

[23]  Adolfo del Campo,et al.  Quantum supremacy of many-particle thermal machines , 2015, 1510.04633.

[24]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[25]  J. Gea-Banacloche,et al.  QUANTUM VERSION OF THE SZILARD ONE-ATOM ENGINE AND THE COST OF RAISING ENERGY BARRIERS , 2005 .

[26]  Sang Wook Kim,et al.  Information from time-forward and time-backward processes in Szilard engines. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Takahiro Sagawa,et al.  Quantum Szilard engine. , 2010, Physical review letters.

[28]  Masahito Ueda,et al.  Second law of thermodynamics with discrete quantum feedback control. , 2007, Physical review letters.

[29]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[30]  T. Sagawa,et al.  Fluctuation Theorem for Many-Body Pure Quantum States. , 2016, Physical review letters.

[31]  Paul Skrzypczyk,et al.  Extracting work from correlations , 2014, 1407.7765.

[32]  Tim Byrnes,et al.  Exciton–polariton condensates , 2014, Nature Physics.

[33]  J. Koski,et al.  Experimental realization of a Szilard engine with a single electron , 2014, Proceedings of the National Academy of Sciences.

[34]  S. Jochim,et al.  Pairing in few-fermion systems with attractive interactions. , 2013, Physical review letters.

[35]  Jordan M. Horowitz,et al.  Designing optimal discrete-feedback thermodynamic engines , 2011, 1110.6808.

[36]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[37]  Sang Wook Kim,et al.  Szilard’s information heat engines in the deep quantum regime , 2012 .

[38]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[39]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[40]  Splitting the wave function of a particle in a box , 2002 .