A review of cryogenic cooling in high speed machining (HSM) of mold and die steels

Metal cutting generates heat which influences the quality of a finished product, the force needed in cutting as well as limiting the life of the cutting tool. There are various attempts by researchers all over the world to understand the mechanism and theory behind the temperature built-up during machining in order to achieve optimized machining procedure and best workpiece results. Theories are developed, experiments conducted as well as models and simulations proposed. The latest attempt in metal cutting cooling is through the use of chilled air, cryogenic cooling. A Ranque-Hilsch vortex tube (RHVT), a device with no moving parts, is used for this low-cost refrigeration purpose. Backgrounds of RHVT, various studies conducted on it, its performance and applications are discussed for the high speed metal cutting cooling application for mold and die steels. Option for future research is proposed.   Key words: High speed machining, end milling, cryogenic cooling, vortex tube, mold and die.

[1]  KEINVORNAME;;; Nagahanumaiah,et al.  An integrated framework for die and mold cost estimation using design features and tooling parameters , 2005 .

[2]  Z. Y. Wang,et al.  Stress Analyses of CBN Insert in Hybrid Machining of RBSN Ceramic , 2004 .

[3]  Álisson Rocha Machado,et al.  Performance of cryogenically treated HSS tools , 2006 .

[4]  A. Gutsol The Ranque effect , 1997 .

[5]  Shane Y. Hong,et al.  Thermal aspects, material considerations and cooling strategies in cryogenic machining , 1999 .

[6]  E. Armarego,et al.  The Machining of Metals , 1969 .

[7]  D. Gangacharyulu,et al.  An Experimental Performance Evaluation of Vortex Tube , 2004 .

[8]  H. Brändle,et al.  New hard/lubricant coating for dry machining , 1999 .

[9]  Brian Boswell,et al.  Air-Cooling Used For Metal Cutting , 2009 .

[10]  L. De Chiffre,et al.  Performance Testing of Cryogenic CO2 as Cutting Fluid in Parting/Grooving and Threading Austenitic Stainless Steel , 2007 .

[11]  Y. Wua,et al.  Modification and experimental research on vortex tube , 2022 .

[12]  C. Gao Experimental study on the Ranque-Hilsch vortex tube , 2005 .

[13]  S. Eiamsa-ard,et al.  Investigation on the Vortex Thermal Separation in a Vortex Tube Refrigerator , 2005 .

[14]  J. Buchler,et al.  Coherent Transport of Angular Momentum: The Ranque‐Hilsch Tube as a Paradigm , 1999, astro-ph/9909022.

[15]  P. V. Rao,et al.  Performance Improvement of Grinding of SiC Using Graphite as a Solid Lubricant , 2004 .

[16]  M. C. Shaw Metal Cutting Principles , 1960 .

[17]  Nader Pourmahmoud,et al.  Numerical Study of the Temperature Separation in the Ranque-Hilsch Vortex Tube , 2008 .

[18]  R. Oliver Numerical Prediction of Primary and Secondary Flows in a Ranque-Hilsch Vortex Tube , 2008 .

[19]  James B. D'Arcy Metalworking Fluids Symposium , 1996 .

[20]  Pongjet Promvonge,et al.  Numerical investigation of the thermal separation in a Ranque–Hilsch vortex tube , 2007 .

[21]  Y. Kevin Chou,et al.  Tool wear mechanism in continuous cutting of hardened tool steels , 1997 .

[22]  S. Eiamsa-ard,et al.  Numerical simulation of flow field and temperature separation in a vortex tube , 2008 .

[23]  Kevser Dincer,et al.  Experimental investigation of the performance of a Ranque–Hilsch vortex tube with regard to a plug located at the hot outlet , 2009 .

[24]  M. Guillot,et al.  On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion , 1997 .

[25]  Steven Y. Liang,et al.  Analysis of Cutting Fluid Aerosol Generation for Environmentally Responsible Machining , 2000 .

[26]  D. O’Sullivan,et al.  Temperature measurement in single point turning , 2001 .

[27]  W. Fröhlingsdorf,et al.  Numerical investigations of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube , 1999 .

[28]  V. F. Ruisi,et al.  Wear rates and wear mechanisms of alumina-based tools cutting steel at a low cutting speed , 1997 .

[29]  Taylan Altan,et al.  High-speed machining of cast iron and alloy steels for die and mold manufacturing , 2000 .

[30]  Satoshi Suda,et al.  Fundamental Research on Hobbing with Minimal Quantity Lubrication of Cutting Oil , 2006 .

[31]  M. I. Ahmed,et al.  Effectiveness of cryogenic machining with modified tool holder , 2007 .

[32]  C. Ducros,et al.  Deposition, characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools , 2003 .

[33]  Gregory Nellis,et al.  Comparison of CFD analysis to empirical data in a commercial vortex tube , 2006 .

[34]  Jaroslav Mackerle,et al.  Finite-element analysis and simulation of machining: a bibliography (1976–1996) , 1999 .

[35]  Jos Derksen,et al.  Simulations of confined turbulent vortex flow , 2005 .

[36]  Gerry Byrne,et al.  Environmentally Clean Machining Processes — A Strategic Approach , 1993 .

[37]  G. Truchon,et al.  Presence of N-nitrosodiethanolamine contamination in Canadian metal-working fluids , 1997 .

[38]  M. Arjomandi,et al.  The effect of vortex angle on the efficiency of the Ranque–Hilsch vortex tube , 2008 .

[39]  W. B. Rowe,et al.  Optimisation of fluid application in grinding , 2008 .

[40]  L. De Chiffre,et al.  Comparison of Methods for Cutting Fluid Performance Testing , 2000 .

[41]  Tae Jo Ko,et al.  Air–Oil Cooling Method for Turning of Hardened Material , 1999 .

[42]  G. Gogos,et al.  CFD analysis of thermal control in a vortex tube based polymerase chain reaction chamber , 2006 .

[43]  de Atam Fons Waele,et al.  Experimental study on a simple Ranque–Hilsch vortex tube , 2005 .

[44]  John W. Sutherland,et al.  Dry Machining and Minimum Quantity Lubrication , 2004 .

[45]  P Lebrun Introduction to cryogenics , 2006 .

[46]  T. Jin,et al.  A study of the convection heat transfer coefficients of grinding fluids , 2008 .

[47]  S. Ganesan,et al.  Finite element analysis of temperature rise in metal cutting processes , 2005 .

[48]  A. Molinari,et al.  Effect of deep cryogenic treatment on the mechanical properties of tool steels , 2001 .

[49]  N. Pourmahmoud,et al.  Numerical Investigation of the Thermal Separation in a Vortex Tube , 2008 .

[50]  Subhash Jacob,et al.  Numerical investigations on flow behaviour and energy separation in Ranque–Hilsch vortex tube , 2008 .

[51]  Shane Y. Hong LUBRICATION MECHANISMS OF LN2 IN ECOLOGICAL CRYOGENIC MACHINING , 2006 .

[52]  EFFECT OF HIGH-PRESSURE COOLANT JET ON GRINDING TEMPERATURE, CHIP AND SURFACE ROUGHNESS IN GRINDING AISI-1040 STEEL , 2006 .

[53]  Yusuf Altintas,et al.  Analytical Prediction of Stability Lobes in Milling , 1995 .

[54]  Shane Y. Hong,et al.  Improving low carbon steel chip breakability by cryogenic chip cooling , 1999 .

[55]  M. P. Escudier,et al.  Observations and LDA measurements of confined turbulent vortex flow , 1980, Journal of Fluid Mechanics.

[56]  Mohd Yusof Noordin,et al.  The effect of multiple pass cutting on surface integrity when hard turning of AISI D2 cold work tool steel , 2007 .

[57]  Jeffery D. Lewins,et al.  Vortex tube optimization theory , 1999 .

[58]  T. Aoyama,et al.  Performance of Metal Cutting on Endmills Manufactured by Cooling-Air and Minimum Quantity Lubrication Grinding , 2005 .

[59]  David K. Aspinwall,et al.  High speed machining of moulds and dies for net shape manufacture , 2000 .

[60]  J. Vincent,et al.  Exposures to inhalable and "total" oil mist aerosol by metal machining shop workers. , 1996, American Industrial Hygiene Association journal.

[61]  Uday S. Dixit,et al.  Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process , 2003 .

[62]  T. Tuomi,et al.  Occupational dermatitis and allergic respiratory diseases in Finnish metalworking machinists. , 2007, Occupational medicine.

[63]  Shane Y. Hong,et al.  Micro-temperature manipulation in cryogenic machining of low carbon steel , 2001 .

[64]  E. Smith,et al.  Numerical prediction of vortex flow and thermal separation in a subsonic vortex tube , 2006 .

[65]  Z. Y. Wang,et al.  Cryogenic machining of hard-to-cut materials , 2000 .

[66]  Sakir Tasdemir,et al.  Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque–Hilsch vortex tubes using artificial neural networks , 2008 .

[67]  E. Westkämper,et al.  Influence of the type of coolant lubricant in grinding with CBN tools , 2007 .

[68]  Shane Y. Hong,et al.  EXPERIMENTAL EVALUATION OF FRICTION COEFFICIENT AND LIQUID NITROGEN LUBRICATION EFFECT IN CRYOGENIC MACHINING , 2002 .

[69]  N. R. Dhar,et al.  Wear behavior of uncoated carbide inserts under dry, wet and cryogenic cooling conditions in turning C-60 steel , 2006 .

[70]  Jaroslav Mackerle,et al.  Finite element analysis and simulation of machining: an addendum: A bibliography (1996–2002) , 2003 .

[71]  R. Karunanithi,et al.  CFD analysis and experimental investigations towards optimizing the parameters of Ranque-Hilsch vortex tube , 2005 .

[72]  Shane Y. Hong,et al.  Improvement of Chip Breaking in Machining Low Carbon Steel by Cryogenically Precooling the Workpiece , 1998 .

[73]  N. R. Dhar,et al.  Cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI-4037 steel under cryogenic condition , 2007 .

[74]  Chong-fang Ma,et al.  Modification and experimental research on vortex tube , 2007 .

[75]  D Hands,et al.  Comparison of metalworking fluid mist exposures from machining with different levels of machine enclosure. , 1996, American Industrial Hygiene Association journal.

[76]  G. Boothroyd,et al.  Fundamentals of metal machining , 1965 .

[77]  R Staudt,et al.  Limits of temperature separation in a vortex tube , 1994 .

[78]  N. R. Dhar,et al.  The influence of cryogenic cooling on tool wear, dimensional accuracy and surface finish in turning AISI 1040 and E4340C steels , 2001 .

[79]  Herbert Schulz,et al.  High-speed milling of dies and moulds - cutting conditions and technology , 1995 .

[80]  Y. Shin,et al.  Hybrid machining of Inconel 718 , 2003 .

[81]  P. Black Theory of metal cutting , 1961 .

[82]  Z. Y. Wang,et al.  Wear of CBN tool in turning of silicon nitride with cryogenic cooling , 1997 .

[83]  D. Kriebel,et al.  Exposure assessment for a field investigation of the acute respiratory effects of metalworking fluids. I. Summary of findings. , 1996, American Industrial Hygiene Association journal.

[84]  Song Wenlong,et al.  Design, fabrication and properties of a self-lubricated tool in dry cutting , 2009 .

[85]  Yakup Yildiz,et al.  A review of cryogenic cooling in machining processes , 2008 .

[86]  Wen-Tung Chien,et al.  The predictive model for machinability of 304 stainless steel , 2001 .

[87]  David K. Aspinwall,et al.  Modelling of temperature and forces when orthogonally machining hardened steel , 1999 .

[88]  N. R. Dhar,et al.  Beneficial effects of cryogenic cooling over dry and wet machining on tool wear and surface finish in turning AISI 1060 steel , 2001 .

[89]  Z. Y. Wang,et al.  Cryogenic PCBN turning of ceramic (Si3N4) , 1996 .

[90]  Gregory Nellis,et al.  Parametric and internal study of the vortex tube using a CFD model , 2005 .

[91]  D. Aspinwall,et al.  A review of ultra high speed milling of hardened steels , 1997 .

[92]  R. Findlay,et al.  A pilot study for monitoring changes in the microbiological component of metalworking fluids as a function of time and use in the system. , 1999, American Industrial Hygiene Association journal.

[93]  S. Tung,et al.  Tool life and wear mechanism of uncoated and coated milling inserts , 1999 .

[94]  James Wallbank,et al.  Cutting temperature: prediction and measurement methods—a review , 1999 .

[95]  Pongjet Promvonge,et al.  Review of Ranque-Hilsch effects in vortex tubes , 2008 .

[96]  P. Thorne,et al.  Pulmonary effects of machining fluids in guinea pigs and mice. , 1996, American Industrial Hygiene Association journal.

[97]  Sachin U. Nimbalkar,et al.  An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube , 2009 .

[98]  Paul Mativenga,et al.  Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining , 2006 .

[99]  R. Komanduri,et al.  Thermal modeling of the metal cutting process — Part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool–chip interface frictional heat source , 2001 .

[100]  Yoshimi Takeuchi,et al.  Thermal State Visualization of Machining Workpiece by Means of a Sensor-Configured Heat Conduction Simulation , 2006 .

[101]  Orhan Aydin,et al.  An experimental study on the design parameters of a counterflow vortex tube , 2006 .

[102]  M. A. El Baradie,et al.  Cutting fluids: Part I. Characterisation , 1996 .

[103]  Yi Wan,et al.  Wear patterns and mechanisms of cutting tools in high-speed face milling , 2002 .

[104]  Kenneth G Hellyar Gas liquefaction using a Ranque-Hilsch vortex tube : design criteria and bibliography , 1979 .

[105]  D. Leith,et al.  Evaporation of Polydisperse Multicomponent Oil Droplets , 1996 .

[106]  Hans Kurt Tönshoff,et al.  Survey of the die and mold manufacturing industry - practices in Germany, Japan, and the United States , 1996 .

[107]  Bakhtier Farouk,et al.  Large eddy simulations of the flow field and temperature separation in the Ranque-Hilsch vortex tube , 2007 .

[108]  Herchang Ay,et al.  Heat transfer and life of metal cutting tools in turning , 1998 .

[109]  Imtiaz Ahmed Choudhury,et al.  Application of Taguchi method in the optimization of end milling parameters , 2004 .

[110]  Shane Y. Hong,et al.  Friction and cutting forces in cryogenic machining of Ti–6Al–4V , 2001 .

[111]  M. A. El Baradie,et al.  Cutting fluids: Part II. Recycling and clean machining , 1996 .

[112]  John W. Sutherland,et al.  An Experimental Investigation of Air Quality in Wet and Dry Turning , 2000 .

[113]  Philippe Lebrun,et al.  CRYOGENICS, KEY TO ADVANCED SCIENCE AND TECHNOLOGY , 2003 .

[114]  P. Sreejith,et al.  Dry machining: Machining of the future , 2000 .

[115]  V. Radhakrishnan,et al.  An investigation on surface grinding using graphite as lubricant , 2002 .

[116]  Mohammad Hassan Saidi,et al.  Exergy model of a vortex tube system with experimental results , 1999 .

[117]  M. Chung,et al.  Study of Energy Separation Mechanism in Vortex Tube by CFD , 2008 .

[118]  N. R. Dhar,et al.  Machining of AISI 4140 steel under cryogenic cooling—tool wear, surface roughness and dimensional deviation , 2002 .

[119]  David Leith,et al.  Performance of Industrial Equipment to Collect Coolant Mist , 1996 .

[120]  S P Krystofiak,et al.  Prediction of an occupational exposure limit for a mixture on the basis of its components: application to metalworking fluids. , 1996, American Industrial Hygiene Association journal.

[121]  Mohamed A. Elbestawi,et al.  From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation , 2002 .

[122]  B. Ahlborn,et al.  Low-pressure vortex tubes , 1996 .

[123]  G. Chryssolouris,et al.  Hierarchical Part Planning Strategy for Environmentally Conscious Machining , 1996 .

[124]  Álisson Rocha Machado,et al.  Application of cutting fluids in machining processes , 2001 .

[125]  Shane Y. Hong,et al.  Economical and Ecological Cryogenic Machining , 2001 .