A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar

Simulations of structure formation in the Universe predict that galaxies are embedded in a ‘cosmic web’, where most baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-α emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at redshift z ≈ 2.3. With a linear projected size of approximately 460 physical kiloparsecs, the Lyman-α emission surrounding the radio-quiet quasar UM 287 extends well beyond the virial radius of any plausible associated dark-matter halo and therefore traces intergalactic gas. The estimated cold gas mass of the filament from the observed emission—about 1012.0 ± 0.5/C1/2 solar masses, where C is the gas clumping factor—is more than ten times larger than what is typically found in cosmological simulations, suggesting that a population of intergalactic gas clumps with subkiloparsec sizes may be missing in current numerical models.

[1]  M. Rieke,et al.  Discovery of a Large ~200 kpc Gaseous Nebula at z ≈ 2.7 with the Spitzer Space Telescope , 2005, astro-ph/0503632.

[2]  H. Rix,et al.  A Statistical Study of Rest-Frame Optical Emission Properties in Luminous Quasars at 2.0⩽z⩽2.5* , 1998, astro-ph/9810287.

[3]  Tokyo,et al.  The Subaru Ly-alpha blob survey: A sample of 100 kpc Ly-alpha blobs at z=3 , 2010, 1010.2877.

[4]  C. Carilli,et al.  The X-Ray-Radio Alignment in the z = 2.2 Radio Galaxy PKS 1138–262 , 2001, astro-ph/0111193.

[5]  S. Lilly,et al.  Detection of dark galaxies and circum-galactic filaments fluorescently illuminated by a quasar at z = 2.4★ , 2012, 1204.5753.

[6]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[7]  G. A. Croes,et al.  FITS++: An Object-Oriented Set of C++ Classes to Support FITS , 1997 .

[8]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[9]  Ofer Lahav,et al.  The Cosmological Parameters , 2003 .

[10]  A. F. Davidsen,et al.  The Rest-Frame Extreme-Ultraviolet Spectral Properties of Quasi-stellar Objects , 2001, astro-ph/0109531.

[11]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[12]  M. Giavalisco,et al.  Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.

[13]  D. Eisenstein,et al.  STRONG FIELD-TO-FIELD VARIATION OF Lyα NEBULAE POPULATIONS AT z ≃ 2.3 , 2010, 1008.2776.

[14]  Simon J. Lilly,et al.  Fluorescent Lyα Emission from the High-Redshift Intergalactic Medium , 2005 .

[15]  C. Steidel,et al.  THE HALO MASSES AND GALAXY ENVIRONMENTS OF HYPERLUMINOUS QSOs AT z ≃ 2.7 IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1204.3636.

[16]  J. Prochaska,et al.  CONFRONTING SIMULATIONS OF OPTICALLY THICK GAS IN MASSIVE HALOS WITH OBSERVATIONS AT z = 2–3 , 2013, 1308.1669.

[17]  C. Porciani,et al.  radamesh: cosmological radiative transfer for Adaptive Mesh Refinement simulations , 2010, 1009.1625.

[18]  THE LYMAN ALPHA FOREST IN THE SPECTRA OF QUASISTELLAR OBJECTS , 1998, astro-ph/9806286.

[19]  Extended Lyman-$\alpha$ emission around bright quasars , 2006, astro-ph/0603835.

[20]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[21]  Institute for Advanced Study,et al.  QUASARS PROBING QUASARS. VI. EXCESS H i ABSORPTION WITHIN ONE PROPER Mpc OF z ∼ 2 QUASARS , 2013, 1308.6222.

[22]  Protoclusters associated with z > 2 radio galaxies - I. Characteristics of high redshift protoclusters , 2006, astro-ph/0610567.

[23]  W. V. Breugel,et al.  Spatially resolved optical images of high-redshift quasi-stellar objects , 1991 .

[24]  R. Cen,et al.  Gravitational collapse of small scale structure as the origin of the Lyman alpha forest , 1994, astro-ph/9409017.

[25]  M. Dopita,et al.  Giant Lyα Nebulae Associated with High-Redshift Radio Galaxies , 2003, astro-ph/0303637.

[26]  Michael E. Anderson,et al.  HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs , 2009, 0901.4121.

[27]  et al,et al.  Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey , 2002, astro-ph/0202408.

[28]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[29]  L. Hernquist,et al.  Dynamics of Interacting Galaxies , 1992 .

[30]  J. Prochaska Quasars Probing Quasars , 2006 .

[31]  C. Breuck,et al.  VIMOS-VLT spectroscopy of the giant Lyα nebulae associated with three z ~ 2.5 radio galaxies , 2007, 0704.1116.

[32]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[33]  R. B. Barreiro,et al.  Planck 2013 results , 2014 .

[34]  H. E. Smith,et al.  Obscuration in Extremely Luminous Quasars , 2007, 0709.4458.

[35]  D. Weinberg,et al.  Lyα EMISSION FROM COSMIC STRUCTURE. I. FLUORESCENCE , 2009, 0907.0704.

[36]  S. Lilly,et al.  Plausible Fluorescent Lyα Emitters around the z = 3.1 QSO 0420–388 , 2006, astro-ph/0611449.

[37]  A. Myers,et al.  The 2dF-SDSS LRG and QSO survey: QSO clustering and the L-z degeneracy , 2006, astro-ph/0612401.

[38]  Robert J. Brunner,et al.  Quasars Probing Quasars. I. Optically Thick Absorbers near Luminous Quasars , 2006, astro-ph/0603742.

[39]  Columbia,et al.  THE CHANDRA DEEP PROTOCLUSTER SURVEY: Lyα BLOBS ARE POWERED BY HEATING, NOT COOLING , 2009, 0904.0452.

[40]  High redshift radio galaxies , 1993 .

[41]  Israel,et al.  Spectroscopy of extended Lyα envelopes around z = 4.5 quasars , 2012, 1205.3895.

[42]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[43]  C. Steidel,et al.  CONSTRAINTS ON HYPERLUMINOUS QSO LIFETIMES VIA FLUORESCENT Lyα EMITTERS AT Z ≃ 2.7 , 2013, 1308.1678.

[44]  H. Ford,et al.  A Search for clusters at high redshift. I. Candidate Lyalpha emitters near 1138-262 at z=2.2 , 2000 .

[45]  A. Dey,et al.  THE DISCOVERY OF A LARGE Lyα+He ii NEBULA AT z ≈ 1.67: A CANDIDATE LOW METALLICITY REGION? , 2009, 0906.4785.

[46]  D. Weinberg,et al.  Imaging the Forest of Lyman Limit Systems , 1996 .

[47]  M. Rauch The Lyman Alpha Forest in the Spectra of QSOs , 1998 .

[48]  S. Virani,et al.  Lyα-EMITTING GALAXIES AT z = 2.1 IN ECDF-S: BUILDING BLOCKS OF TYPICAL PRESENT-DAY GALAXIES? , 2009, 0910.2244.

[49]  Robin Ciardullo,et al.  THE EVOLUTION OF Lyα-EMITTING GALAXIES BETWEEN z = 2.1 AND z = 3.1 , 2011, 1109.4685.