Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy

Understanding local mechanisms for temperature-induced phase transitions in polymers requires quantitative measurements of the thermomechanical behavior, including glass transition and melting temperatures as well as temperature dependent elastic and loss modulus and thermal expansion coefficients in nanoscale volumes. Here, we demonstrate an approach for probing local thermal phase transitions based on the combination of thermal field confinement by a heated SPM probe and multi-frequency thermomechanical detection. The local measurement of the glass transition temperature is demonstrated and the detection limits are established.

[1]  W. Häberle,et al.  The "millipede" - nanotechnology entering data storage , 2002 .

[2]  J. Douglas,et al.  Polymer Viscoelasticity and Residual Stress Effects on Nanoimprint Lithography , 2007 .

[3]  G. Cross,et al.  Measuring glassy and viscoelastic polymer flow in molecular-scale gaps using a flat punch mechanical probe. , 2008, ACS nano.

[4]  J. E. Mark Ceramic‐reinforced polymers and polymer‐modified ceramics , 1996 .

[5]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[6]  T. Chow,et al.  VISCOELASTIC RELAXATION IN ORIENTED SEMICRYSTALLINE POLYMERS , 1991 .

[7]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[8]  Stephen Jesse,et al.  High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy. , 2006, Physical review letters.

[9]  Chunhai. Wang The principle of micro thermal analysis using atomic force microscope , 2004 .

[10]  G. Cross,et al.  Variable temperature thin film indentation with a flat punch. , 2008, The Review of scientific instruments.

[11]  Ulf R. Pedersen,et al.  Glass-forming liquids: one or more ‘order’ parameters? , 2007, 0712.0030.

[12]  A. Majumdar,et al.  Scanning Joule expansion microscopy at nanometer scales , 1998 .

[13]  Dror Sarid,et al.  Exploring Scanning Probe Microscopy with MATHEMATICA , 1997 .

[14]  D. Rugar,et al.  Nanoscale magnetic resonance imaging , 2009, Proceedings of the National Academy of Sciences.

[15]  M. Pietralla High thermal conductivity of polymers: Possibility or dream? , 1996 .

[16]  Daniel J Müller,et al.  Imaging and manipulation of biological structures with the AFM. , 2002, Micron.

[17]  K. Friedrich,et al.  Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites , 2001 .

[18]  Anthony B. Kos,et al.  Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods , 2005 .

[19]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[20]  T. L. Wright,et al.  Electrical, Thermal, and Mechanical Characterization of Silicon Microcantilever Heaters , 2006, Journal of Microelectromechanical Systems.

[21]  M. Boyce,et al.  Temperature, strain rate, and strain state dependence of the evolution in mechanical behaviour and structure of poly(ethylene terephthalate) with finite strain deformation , 1997 .

[22]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[23]  Jianbo Chen,et al.  NSOM‐ and AFM‐based nanotechnology elucidates nano‐structural and atomic‐force features of a Y. pestis V immunogen‐containing particle vaccine capable of eliciting robust response , 2009, Proteomics.

[24]  Jungchul Lee,et al.  Liquid Operation of Silicon Microcantilever Heaters , 2008, IEEE Sensors Journal.

[25]  Tengjiao Hu,et al.  Real-time shape evolution of nanoimprinted polymer structures during thermal annealing. , 2006, Nano letters.

[26]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[27]  Jingdong Luo,et al.  Molecular mobility and transitions in complex organic systems studied by shear force microscopy , 2007 .

[28]  A. Yamanaka,et al.  Thermal Conductivity and Diffusivity of High-Strength Polymer Fibers , 1997 .

[29]  W. King,et al.  Frequency-Dependent Electrical and Thermal Response of Heated Atomic Force Microscope Cantilevers , 2007, Journal of Microelectromechanical Systems.

[30]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[31]  Delphine Gourdon,et al.  Local mechanical spectroscopy with nanometer-scale lateral resolution , 1998 .

[32]  H. Pollock,et al.  Two new microscopical variants of thermomechanical modulation: scanning thermal expansion microscopy and dynamic localized thermomechanical analysis , 2000, Journal of microscopy.