Volcanic aerosol layers observed with multiwavelength Raman lidar over central Europe in 2008–2009
暂无分享,去创建一个
A. Ansmann | I. Mattis | U. Wandinger | D. Müller | M. Tesche | A. Hiebsch | J. Schmidt | Fanny Finger | T. Kanitz | P. Siefert | Jörg Schmidt
[1] A. Ansmann,et al. Measurement of atmospheric aerosol extinction profiles with a Raman lidar. , 1990, Optics letters.
[2] K. Sassen. Evidence for Liquid-Phase Cirrus Cloud Formation from Volcanic Aerosols: Climatic Implications , 1992, Science.
[3] David N. Whiteman,et al. Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991 , 1992 .
[4] A. Ansmann,et al. Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio , 1992 .
[5] One‐year observations of Mount‐Pinatubo aerosol with an advanced Raman lidar over Germany at 53.5° N , 1993 .
[6] Terry Deshler,et al. Midlatitude lidar backscatter conversions based on balloonborne aerosol measurements , 1995 .
[7] M. McCormick,et al. Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.
[8] A. Ansmann,et al. Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar. , 1995, Applied optics.
[9] A. Ansmann,et al. Evolution of the Pinatubo Aerosol: Raman Lidar Observations of Particle Optical Depth, Effective Radius, Mass, and Surface Area over Central Europe at 53.4°N , 1997 .
[10] Stratospheric aerosol monitoring with lidar : Conventional backscatter versus Raman lidar observations of Pinatubo aerosol , 1998 .
[11] A. Ansmann,et al. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.
[12] David C. Woods,et al. Twenty-six years of lidar monitoring of northern midlatitude stratospheric aerosols , 2001, SPIE Remote Sensing.
[13] Albert Ansmann,et al. European pollution outbreaks during ACE 2: Optical particle properties inferred from multiwavelength lidar and star-Sun photometry , 2002 .
[14] A. Ansmann,et al. Dual‐wavelength Raman lidar observations of the extinction‐to‐backscatter ratio of Saharan dust , 2002 .
[15] Albert Ansmann,et al. Relative-humidity profiling in the troposphere with a Raman lidar. , 2002, Applied optics.
[16] H. Jäger. Long‐term record of lidar observations of the stratospheric aerosol layer at Garmisch‐Partenkirchen , 2005 .
[17] A. Stohl,et al. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2 , 2005 .
[18] Albert Ansmann,et al. Lidar and Atmospheric Aerosol Particles , 2005 .
[19] H. Jäger,et al. Trends in the nonvolcanic component of stratospheric aerosol over the period 1971–2004 , 2006 .
[20] A. Ansmann,et al. Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .
[21] Albert Ansmann,et al. Ten years of multiwavelength Raman lidar observations of free-tropospheric aerosol layers over central Europe : Geometrical properties and annual cycle , 2008 .
[22] S. Gassó. Satellite observations of the impact of weak volcanic activity on marine clouds , 2008 .
[23] B. Otto‐Bliesner,et al. Climate response to large, high‐latitude and low‐latitude volcanic eruptions in the Community Climate System Model , 2009 .
[24] Klaus-Peter Heue,et al. Influence of the 2008 Kasatochi volcanic eruption on sulfurous and carbonaceous aerosol constituents in the lower stratosphere , 2009 .
[25] M. Wendisch,et al. Aerosol layers from the 2008 eruptions of Mount Okmok and Mount Kasatochi: In situ upper troposphere and lower stratosphere measurements of sulfate and organics over Europe , 2010 .