A State-Space Approach to Identification of Wiener-Hammerstein Benchmark Model

Abstract We develop a state-space method of identifying a Wiener-Hammerstein system, where a nonlinearity is sandwiched by two linear systems. By dividing it into the linear system and Hammerstein system composed of the nonlinearity and the second linear system, we propose an iterative method of identifying the Hammerstein system by the orthogonal decomposition subspace method (ORT) and the linear system by minimizing the square norm of output prediction error, for which the identified Hammerstein model plays a role of instrument of measuring the output of the linear system. The data driven local coordinate (DDLC)-based gradient method is applied to this minimization. Numerical results for the benchmark problem are included to show the applicability of the present method.

[1]  J. Schoukens,et al.  Study of the LTI relations between the outputs of two coupled Wiener systems and its application to the generation of initial estimates for Wiener-Hammerstein systems , 2008, Autom..

[2]  Takao Fujii,et al.  Nonlinear system identification of rapid thermal processing , 2000 .

[3]  M. Verhaegen,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[4]  Er-Wei Bai,et al.  Towards identification of Wiener systems with the least amount of a priori information on the nonlinearity , 2008, Autom..

[5]  Michel Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1996, Signal Process..

[6]  Brett Ninness,et al.  On Gradient-Based Search for Multivariable System Estimates , 2008, IEEE Transactions on Automatic Control.

[7]  Dennis Bernstein,et al.  Space Weather Forecasting , 2007, IEEE Control Systems.

[8]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[9]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[10]  Lennart Ljung,et al.  IDENTIFICATION OF WIENER SYSTEM WITH MONOTONOUS NONLINEARITY , 2006 .

[11]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[12]  W. R. Cluett,et al.  Identification of Wiener-type nonlinear systems in a noisy environment , 1997 .

[13]  Johan Schoukens,et al.  Computing an initial estimate of a Wiener-Hammerstein system with a random phase multisine excitation , 2005, IEEE Transactions on Instrumentation and Measurement.

[14]  Keith R. Godfrey,et al.  Initial estimates for the dynamics of a Hammerstein system , 2006 .

[15]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[16]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[17]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[18]  Anders Helmersson,et al.  Data driven local coordinates for multivariable linear systems and their application to system identification , 2004, Autom..

[19]  Yves Rolain,et al.  Non-parametric Estimation of the Frequency-response Functions of the Linear Blocks of a Wiener-Hammerstein Model , 1997, Autom..

[20]  Michel Verhaegen,et al.  Linear and Non-linear System Identification Using Separable Least-Squares , 1997, Eur. J. Control.

[21]  Dietmar Bauer,et al.  Asymptotic properties of least-squares estimates of Hammerstein-Wiener models , 2002 .

[22]  Keith R. Godfrey,et al.  Initial estimates for the dynamics of a Hammerstein system , 2007, Autom..

[23]  M. Boutayeb,et al.  Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..