Using dual approximation algorithms for scheduling problems: Theoretical and practical results
暂无分享,去创建一个
[1] Ronald L. Graham,et al. Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.
[2] Donald K. Friesen,et al. Tighter Bounds for the Multifit Processor Scheduling Algorithm , 1984, SIAM J. Comput..
[3] Michael Allen Langston,et al. Processor scheduling with improved heuristic algorithms , 1981 .
[4] David B. Shmoys,et al. A packing problem you can almost solve by sitting on your suitcase , 1986 .
[5] G. S. Lueker,et al. Bin packing can be solved within 1 + ε in linear time , 1981 .
[6] D. K. Friesen,et al. Sensitivity Analysis for Heuristic Algorithms , 1978 .
[7] Eugene L. Lawler,et al. Parameterized Approximation Scheme for the Multiple Knapsack Problem , 2009, SIAM J. Comput..
[8] Oscar H. Ibarra,et al. Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.
[9] Richard M. Karp,et al. An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[10] Edward G. Coffman,et al. An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..
[11] Journal of the Association for Computing Machinery , 1961, Nature.
[12] Sartaj Sahni,et al. Algorithms for Scheduling Independent Tasks , 1976, J. ACM.
[13] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[14] Ronald L. Graham,et al. Bounds for certain multiprocessing anomalies , 1966 .