Using magnetic birefringence to determine the molecular arrangement of supramolecular nanostructures

Abstract Supramolecular aggregates can be aligned in solution using a magnetic field. Because of the optical anisotropy of the molecular building blocks, the alignment results in an anisotropic refractive index of the solution parallel and perpendicular to the magnetic field. We present a model for calculating the magnetic birefringence, using solely the magnetic susceptibilities and optical polarizabilities of the molecules, for any molecular arrangement. We demonstrate that magnetic birefringence is a very sensitive tool for determining the molecular organization within supramolecular aggregates.

[1]  K. Takazawa,et al.  Waveguiding Properties of Fiber-Shaped Aggregates Self-Assembled from Thiacyanine Dye Molecules , 2007 .

[2]  Stéphane Guillerez,et al.  Poly(3‐hexylthiophene) Fibers for Photovoltaic Applications , 2007 .

[3]  E. W. Meijer,et al.  Anharmonic magnetic deformation of self-assembled molecular nanocapsules. , 2007, Physical review letters.

[4]  Theo Rasing,et al.  Macroscopic Hierarchical Surface Patterning of Porphyrin Trimers via Self-Assembly and Dewetting , 2006, Science.

[5]  E. W. Meijer,et al.  Probing the Solvent-Assisted Nucleation Pathway in Chemical Self-Assembly , 2006, Science.

[6]  E. W. Meijer,et al.  Polarized emission of individual self-assembled oligo(p-phenylenevinylene)-based nanofibers on a solid support. , 2005, Journal of the American Chemical Society.

[7]  Yang Yang,et al.  Polyaniline nanofiber/gold nanoparticle nonvolatile memory. , 2005, Nano letters.

[8]  E. W. Meijer,et al.  About Supramolecular Assemblies of π-Conjugated Systems , 2005 .

[9]  E. W. Meijer,et al.  Magnetic deformation of self-assembled sexithiophene spherical nanocapsules. , 2005, Journal of the American Chemical Society.

[10]  J. Shelnutt,et al.  Porphyrin nanotubes by ionic self-assembly. , 2004, Journal of the American Chemical Society.

[11]  B. H. Weiller,et al.  Polyaniline nanofibers: facile synthesis and chemical sensors. , 2003, Journal of the American Chemical Society.

[12]  O. Levy Dielectric response and electro-optical effects in suspensions of anisotropic particles. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Monkman,et al.  Measurement of the Anisotropic Refractive Indices of Spin Cast Thin Poly(2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐p‐phenylenevinylene) (MEH–PPV) Films , 2002 .

[15]  H. Klok,et al.  Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. , 2001, Advanced drug delivery reviews.

[16]  D. H. Mosley,et al.  Theoretical ab initio investigation of the dipole polarizabilities of oligothiophenes and polythiophene , 1994 .

[17]  A. Gavezzotti,et al.  Crystal packing and lattice energies of polythienyls: calculations and predictions , 1991 .

[18]  W. Flygare,et al.  Molecular g values, magnetic susceptibility anisotropies, second moment of the charge distribution, and molecular quadrupole moments in furan and thiophene , 1969 .

[19]  J. Pople,et al.  A Theory of Magnetic Double Refraction , 1956 .

[20]  W. L. Bragg,et al.  The form birefringence of macromolecules , 1953 .

[21]  J. Osborn Demagnetizing Factors of the General Ellipsoid , 1945 .

[22]  F. Herlach,et al.  Strong and ultrastrong magnetic fields and their applications: introduction , 1985 .

[23]  G. Maret,et al.  Biomolecules and Polymers in High Steady Magnetic Fields , 1985 .