Aberrant visual pathway development in albinism: From retina to cortex

Albinism refers to a group of genetic abnormalities in melanogenesis that are associated neuronal misrouting through the optic chiasm. We perform quantitative assessment of visual pathway structure and function in 23 persons with albinism (PWA) and 20 matched controls using optical coherence tomography (OCT), volumetric magnetic resonance imaging (MRI), diffusion tensor imaging and visual evoked potentials (VEP). PWA had a higher streamline decussation index (percentage of total tractography streamlines decussating at the chiasm) compared with controls (Z = −2.24, p = .025), and streamline decussation index correlated weakly with inter‐hemispheric asymmetry measured using VEP (r = .484, p = .042). For PWA, a significant correlation was found between foveal development index and total number of streamlines (r = .662, p < .001). Significant positive correlations were found between peri‐papillary retinal nerve fibre layer thickness and optic nerve (r = .642, p < .001) and tract (r = .663, p < .001) width. Occipital pole cortical thickness was 6.88% higher (Z = −4.10, p < .001) in PWA and was related to anterior visual pathway structures including foveal retinal pigment epithelium complex thickness (r = −.579, p = .005), optic disc (r = .478, p = .021) and rim areas (r = .597, p = .003). We were unable to demonstrate a significant relationship between OCT‐derived foveal or optic nerve measures and MRI‐derived chiasm size or streamline decussation index. Our novel tractographic demonstration of altered chiasmatic decussation in PWA corresponds to VEP measured cortical asymmetry and is consistent with chiasmatic misrouting in albinism. We also demonstrate a significant relationship between retinal pigment epithelium and visual cortex thickness indicating that retinal pigmentation defects in albinism lead to downstream structural reorganisation of the visual cortex.

[1]  M L Wolbarsht,et al.  Melanin, a unique biological absorber. , 1981, Applied optics.

[2]  Wolfgang Reith,et al.  Configuration of the optic chiasm in humans with albinism as revealed by magnetic resonance imaging. , 2003, Investigative ophthalmology & visual science.

[3]  A. Majima,et al.  Histology of fetal eyes with oculocutaneous albinism. , 1996, Archives of ophthalmology.

[4]  Michael Bach,et al.  ISCEV standard for clinical visual evoked potentials: (2016 update) , 2016, Documenta Ophthalmologica.

[5]  H Spekreijse,et al.  A decisive electrophysiological test for human albinism. , 1983, Electroencephalography and clinical neurophysiology.

[6]  C. Mason,et al.  Spatiotemporal Features of Early Neuronogenesis Differ in Wild-Type and Albino Mouse Retina , 2002, The Journal of Neuroscience.

[7]  G. Jeffery The albino retina: an abnormality that provides insight into normal retinal development , 1997, Trends in Neurosciences.

[8]  I. Gottlob,et al.  Characterization of Abnormal Optic Nerve Head Morphology in Albinism Using Optical Coherence Tomography. , 2015, Investigative ophthalmology & visual science.

[9]  G. Jeffery,et al.  Retinal mitosis is regulated by dopa, a melanin precursor that may influence the time at which cells exit the cell cycle: Analysis of patterns of cell production in pigmented and albino retinae , 1999, The Journal of comparative neurology.

[10]  B. Wandell Clarifying Human White Matter. , 2016, Annual review of neuroscience.

[11]  Larissa McKetton,et al.  Measuring Connectivity in the Primary Visual Pathway in Human Albinism Using Diffusion Tensor Imaging and Tractography. , 2016, Journal of visualized experiments : JoVE.

[12]  N. Galloway Aniridia , 1935 .

[13]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[14]  Alessio Fracasso,et al.  Altered organization of the visual cortex in FHONDA syndrome , 2019, NeuroImage.

[15]  K. Schneider,et al.  Abnormal lateral geniculate nucleus and optic chiasm in human albinism , 2014, The Journal of comparative neurology.

[16]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[17]  F. Pestilli,et al.  Evaluation and statistical inference for living connectomes , 2014, Nature Methods.

[18]  Punita Bhansali,et al.  Delayed neurogenesis leads to altered specification of ventrotemporal retinal ganglion cells in albino mice , 2014, Neural Development.

[19]  J. Sloper Chicken and egg , 2006, British Journal of Ophthalmology.

[20]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[21]  B. Dreher,et al.  Changes in the numbers of retinal ganglion cells and optic nerve axons in the developing albino rabbit. , 1987, Brain research.

[22]  C. Mason,et al.  Zic2 promotes axonal divergence at the optic chiasm midline by EphB1-dependent and -independent mechanisms , 2008, Development.

[23]  I. Kralj-Hans,et al.  Differential effect of dopamine on mitosis in early postnatal albino and pigmented rat retinae. , 2006, Journal of neurobiology.

[24]  L. Erskine,et al.  Connecting the Retina to the Brain , 2014, ASN neuro.

[25]  I. Gottlob,et al.  In Vivo Foveal Development Using Optical Coherence Tomography. , 2015, Investigative ophthalmology & visual science.

[26]  P. Rakić,et al.  Synaptogenesis in visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Delphine S Prieur,et al.  Retinal axon guidance at the midline: Chiasmatic misrouting and consequences , 2017, Developmental neurobiology.

[28]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[29]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[30]  G. Leuba,et al.  Evolution of neuronal numerical density in the developing and aging human visual cortex. , 1987, Human neurobiology.

[31]  J. Izatt,et al.  Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography. , 2009, Archives of ophthalmology.

[32]  A. Hendrickson,et al.  Astrocytes and blood vessels define the foveal rim during primate retinal development. , 2000, Investigative ophthalmology & visual science.

[33]  P. Huttenlocher,et al.  The development of synapses in striate cortex of man. , 1987, Human neurobiology.

[34]  Punita Bhansali,et al.  Eye-Specific Projections of Retinogeniculate Axons Are Altered in Albino Mice , 2012, The Journal of Neuroscience.

[35]  A. Hendrickson,et al.  The foveal avascular region of developing human retina. , 2008, Archives of ophthalmology.

[36]  R. Guillery,et al.  Abnormal visual pathways in the brain of a human albino , 1975, Brain Research.

[37]  Parul Sony,et al.  Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. , 2006, Investigative ophthalmology & visual science.

[38]  Michael B Hoffmann,et al.  Pigmentation predicts the shift in the line of decussation in humans with albinism , 2007, The European journal of neuroscience.

[39]  John Bradbury,et al.  A new recessively inherited disorder composed of foveal hypoplasia, optic nerve decussation defects and anterior segment dysgenesis maps to chromosome 16q23.3-24.1 , 2013, Molecular vision.

[40]  G. Baker,et al.  Abnormal axons in the albino optic tract. , 2009, Investigative ophthalmology & visual science.

[41]  G. Holder,et al.  Optic chiasm formation in humans is independent of foveal development , 2005, The European journal of neuroscience.

[42]  U. Dräger,et al.  Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  Garey Lj Structural development of the visual system of man. , 1984 .

[44]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[45]  Birgit Lorenz,et al.  Misrouting of the optic nerves in albinism: estimation of the extent with visual evoked potentials. , 2005, Investigative ophthalmology & visual science.

[46]  P. Elschnig Zur Anatomie des menschlichen Albinoauges , 1913, Albrecht von Graefes Archiv für Ophthalmologie.

[47]  Wei Li,et al.  Increasing the complexity: new genes and new types of albinism , 2014, Pigment cell & melanoma research.

[48]  R. Purohit,et al.  Mutational Analysis of Oculocutaneous Albinism: A Compact Review , 2014, BioMed research international.

[49]  A. Levin,et al.  Albinism for the busy clinician. , 2011, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[50]  A. Leventhal,et al.  Retinal projections and functional architecture of cortical areas 17 and 18 in the tyrosinase-negative albino cat , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Christopher Bowd,et al.  Evaluating the Optic Disc and Retinal Nerve Fiber Layer in Glaucoma II: Optical Image Analysis , 2000, Seminars in ophthalmology.

[52]  Mervyn G. Thomas,et al.  The functional significance of foveal abnormalities in albinism measured using spectral-domain optical coherence tomography. , 2011, Ophthalmology.

[53]  L. Zangwill,et al.  Relationship of optic disc topography to optic nerve fiber number in glaucoma. , 1998, Archives of ophthalmology.

[54]  H. Bridge,et al.  Changes in brain morphology in albinism reflect reduced visual acuity , 2014, Cortex.

[55]  G. Jeffery The retinal pigment epithelium as a developmental regulator of the neural retina , 1998, Eye.

[56]  G. Jeffery,et al.  Variations in cell density in the ganglion cell layer of the retina as a function of ocular pigmentation , 2002, The European journal of neuroscience.

[57]  Glen Jeffery,et al.  Retinal abnormalities in human albinism translate into a reduction of grey matter in the occipital cortex , 2005, The European journal of neuroscience.

[58]  Markus Ritter,et al.  RETINAL PIGMENT EPITHELIUM FINDINGS IN PATIENTS WITH ALBINISM USING WIDE-FIELD POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY , 2014, Retina.

[59]  L. Garey Structural development of the visual system of man. , 1984, Human neurobiology.

[60]  I. Gottlob,et al.  Altered whole‐brain connectivity in albinism , 2017, Human brain mapping.

[61]  J. Sheth,et al.  Persistent hyaloid artery with an aberrant peripheral retinal attachment: A unique presentation , 2013, Oman journal of ophthalmology.

[62]  I. Gottlob,et al.  Nystagmus in childhood. , 2014, Pediatrics and neonatology.

[63]  Serge O. Dumoulin,et al.  Congenital visual pathway abnormalities: a window onto cortical stability and plasticity , 2015, Trends in Neurosciences.

[64]  J. Provis Development of the Primate Retinal Vasculature , 2001, Progress in Retinal and Eye Research.

[65]  B. Reese,et al.  Chiasmatic course of temporal retinal axons in the developing ferret , 1993, The Journal of comparative neurology.

[66]  Stefan Skare,et al.  A Model-Based Method for Retrospective Correction of Geometric Distortions in Diffusion-Weighted EPI , 2002, NeuroImage.

[67]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[68]  A. Morland,et al.  The fovea regulates symmetrical development of the visual cortex , 2008, The Journal of comparative neurology.

[69]  A. Cowey,et al.  Imaging studies in congenital anophthalmia reveal preservation of brain architecture in 'visual' cortex. , 2009, Brain : a journal of neurology.

[70]  F. Riemslag,et al.  Chiasmal misrouting and foveal hypoplasia without albinism , 2006, British Journal of Ophthalmology.

[71]  Chunshui Yu,et al.  Thick Visual Cortex in the Early Blind , 2009, The Journal of Neuroscience.

[72]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Stone,et al.  Retinal abnormalities in the Siamese cat , 1978, The Journal of comparative neurology.

[74]  Ariel Rokem,et al.  Evaluating the Accuracy of Diffusion MRI Models in White Matter , 2015, PloS one.

[75]  Michael Bach,et al.  ISCEV standard for clinical visual evoked potentials (2009 update) , 2010, Documenta Ophthalmologica.

[76]  U. Goswami A quick primer on brain development , 2004 .

[77]  Irene Gottlob,et al.  Aetiology of infantile nystagmus. , 2014, Current opinion in neurology.

[78]  Mervyn G. Thomas,et al.  Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity? , 2011, Ophthalmology.

[79]  G. Naumann,et al.  [Foveolar aplasia in tyrosinase-positive oculocutaneous albinisim (author's transl)]. , 1976, Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. Albrecht von Graefe's archive for clinical and experimental ophthalmology.

[80]  D. Chauhan,et al.  The interpretation of optical coherence tomography images of the retina. , 1999, Investigative ophthalmology & visual science.

[81]  R W Guillery,et al.  Abnormal central visual pathways in the brain of an albino green monkey (Cercopithecus aethiops) , 1984, The Journal of comparative neurology.